Protein Complex Assembly pp 29-44 | Cite as
High-Throughput Electron Cryo-tomography of Protein Complexes and Their Assembly
Abstract
Electron cryo-tomography and subtomogram averaging enable visualization of protein complexes in situ, in three dimensions, in a near-native frozen-hydrated state to nanometer resolutions. To achieve this, intact cells are vitrified and imaged over a range of tilts within an electron microscope. These images can subsequently be reconstructed into a three-dimensional volume representation of the sample cell. Because complexes are visualized in situ, crucial insights into their mechanism, assembly process, and dynamic interactions with other proteins become possible. To illustrate the electron cryo-tomography workflow for visualizing protein complexes in situ, we describe our workflow of preparing samples, imaging, and image processing using Leginon for data collection, IMOD for image reconstruction, and PEET for subtomogram averaging.
Key words
Electron cryo-tomography Subtomogram averaging Molecular machines Protein self-assembly Structural biologyNotes
Acknowledgment
LH was supported by a Biotechnology and Biological Sciences Research Council postgraduate training award and Biotechnology and Biological Sciences Research Council Grant BB/L023091/1 to MB.
References
- 1.Asano S, Engel BD, Baumeister W (2016) In situ cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428:332–343. https://doi.org/10.1016/j.jmb.2015.09.030 CrossRefPubMedGoogle Scholar
- 2.Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407–419. https://doi.org/10.1083/jcb.201304193 CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Briggs JA (2013) Structural biology in situ—the potential of subtomogram averaging. Curr Opin Struct Biol 23:261–267. https://doi.org/10.1016/j.sbi.2013.02.003 CrossRefPubMedGoogle Scholar
- 4.Beck M, Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol 26:825–837. https://doi.org/10.1016/j.tcb.2016.08.006 CrossRefPubMedGoogle Scholar
- 5.Chen S, Beeby M, Murphy GE et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981. https://doi.org/10.1038/emboj.2011.186 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci 113:E1917–E1926. https://doi.org/10.1073/pnas.1518952113 CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Chang Y-W, Rettberg LA, Treuner-Lange A et al (2016) Architecture of the type IVa pilus machine. Science 351:aad2001. https://doi.org/10.1126/science.aad2001 CrossRefPubMedGoogle Scholar
- 8.Zhao X, Zhang K, Boquoi T et al (2013) Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc Natl Acad Sci 110(35):14390–14395. https://doi.org/10.1073/pnas.1308306110 CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Chang J, Liu X, Rochat RH et al (2012) Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Adv Exp Med Biol 726:49–90. https://doi.org/10.1007/978-1-4614-0980-9_4 CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Schur FKM, Obr M, Hagen WJH et al (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–508. https://doi.org/10.1126/science.aaf9620 CrossRefPubMedGoogle Scholar
- 11.Hagen WJH, Wan W, Briggs JAG (2017) Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J Struct Biol 197:191–198. https://doi.org/10.1016/j.jsb.2016.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Kunz M, Frangakis AS (2017) Three-dimensional CTF correction improves the resolution of electron tomograms. J Struct Biol 197:114–122. https://doi.org/10.1016/j.jsb.2016.06.016 CrossRefPubMedGoogle Scholar
- 13.Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, BerlinCrossRefGoogle Scholar
- 14.Woldringh CL (1976) Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli. J Bacteriol 125:248–257PubMedPubMedCentralGoogle Scholar
- 15.Farley MM, Hu B, Margolin W, Liu J (2016) Minicells, back in fashion. J Bacteriol 198:1186–1195. https://doi.org/10.1128/JB.00901-15 CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Schorb M, Gaechter L, Avinoam O et al (2017) New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. J Struct Biol 197:83–93. https://doi.org/10.1016/j.jsb.2016.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Briegel A, Ladinsky MS, Oikonomou C et al (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 3:e02151. https://doi.org/10.7554/eLife.02151 CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51. https://doi.org/10.1016/j.jsb.2005.07.007 CrossRefPubMedGoogle Scholar
- 19.Zheng QS, Braunfeld MB, Sedat JW, Agard DA (2004) An improved strategy for automated electron microscopic tomography. J Struct Biol 147:91–101. https://doi.org/10.1016/j.jsb.2004.02.005 CrossRefPubMedGoogle Scholar
- 20.Kremer J, Mastronarde D, McIntosh J (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
- 21.Nicastro D, Schwartz C, Pierson J et al (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948. https://doi.org/10.1126/science.1128618 CrossRefPubMedGoogle Scholar
- 22.Suloway C, Shi J, Cheng A et al (2009) Fully automated, sequential tilt-series acquisition with Leginon. J Struct Biol 167:11–18. https://doi.org/10.1016/j.jsb.2009.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Ding HJ, Oikonomou CM, Jensen GJ (2015) The Caltech tomography database and automatic processing pipeline. J Struct Biol 192:279–286. https://doi.org/10.1016/j.jsb.2015.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Russo CJ, Passmore LA (2014) Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380. https://doi.org/10.1126/science.1259530 CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14:375–379. https://doi.org/10.1017/S1431927608080781 CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Jain T, Sheehan P, Crum J et al (2012) Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179:68–75. https://doi.org/10.1016/j.jsb.2012.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Cao M, Takaoka A, Zhang H-B, Nishi R (2011) An automatic method of detecting and tracking fiducial markers for alignment in electron tomography. J Electron Microsc 60:39–46. https://doi.org/10.1093/jmicro/dfq076 CrossRefGoogle Scholar
- 28.Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197:102–113. https://doi.org/10.1016/j.jsb.2016.07.011 CrossRefPubMedGoogle Scholar
- 29.Morado DR, Hu B, Liu J (2016) Using tomoauto – a protocol for high-throughput automated cryo-electron tomography. J Vis Exp:e53608. https://doi.org/10.3791/53608
- 30.Bharat TAM, Scheres SHW (2016) Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11:2054–2065. https://doi.org/10.1038/nprot.2016.124 CrossRefPubMedPubMedCentralGoogle Scholar