Skip to main content

High-Throughput Electron Cryo-tomography of Protein Complexes and Their Assembly

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Electron cryo-tomography and subtomogram averaging enable visualization of protein complexes in situ, in three dimensions, in a near-native frozen-hydrated state to nanometer resolutions. To achieve this, intact cells are vitrified and imaged over a range of tilts within an electron microscope. These images can subsequently be reconstructed into a three-dimensional volume representation of the sample cell. Because complexes are visualized in situ, crucial insights into their mechanism, assembly process, and dynamic interactions with other proteins become possible. To illustrate the electron cryo-tomography workflow for visualizing protein complexes in situ, we describe our workflow of preparing samples, imaging, and image processing using Leginon for data collection, IMOD for image reconstruction, and PEET for subtomogram averaging.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Asano S, Engel BD, Baumeister W (2016) In situ cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428:332–343. https://doi.org/10.1016/j.jmb.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  2. Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407–419. https://doi.org/10.1083/jcb.201304193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Briggs JA (2013) Structural biology in situ—the potential of subtomogram averaging. Curr Opin Struct Biol 23:261–267. https://doi.org/10.1016/j.sbi.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Beck M, Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol 26:825–837. https://doi.org/10.1016/j.tcb.2016.08.006

    Article  PubMed  Google Scholar 

  5. Chen S, Beeby M, Murphy GE et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981. https://doi.org/10.1038/emboj.2011.186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Beeby M, Ribardo DA, Brennan CA et al (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci 113:E1917–E1926. https://doi.org/10.1073/pnas.1518952113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chang Y-W, Rettberg LA, Treuner-Lange A et al (2016) Architecture of the type IVa pilus machine. Science 351:aad2001. https://doi.org/10.1126/science.aad2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhao X, Zhang K, Boquoi T et al (2013) Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc Natl Acad Sci 110(35):14390–14395. https://doi.org/10.1073/pnas.1308306110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang J, Liu X, Rochat RH et al (2012) Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Adv Exp Med Biol 726:49–90. https://doi.org/10.1007/978-1-4614-0980-9_4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schur FKM, Obr M, Hagen WJH et al (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–508. https://doi.org/10.1126/science.aaf9620

    Article  CAS  PubMed  Google Scholar 

  11. Hagen WJH, Wan W, Briggs JAG (2017) Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J Struct Biol 197:191–198. https://doi.org/10.1016/j.jsb.2016.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kunz M, Frangakis AS (2017) Three-dimensional CTF correction improves the resolution of electron tomograms. J Struct Biol 197:114–122. https://doi.org/10.1016/j.jsb.2016.06.016

    Article  PubMed  Google Scholar 

  13. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, Berlin

    Book  Google Scholar 

  14. Woldringh CL (1976) Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli. J Bacteriol 125:248–257

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Farley MM, Hu B, Margolin W, Liu J (2016) Minicells, back in fashion. J Bacteriol 198:1186–1195. https://doi.org/10.1128/JB.00901-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schorb M, Gaechter L, Avinoam O et al (2017) New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. J Struct Biol 197:83–93. https://doi.org/10.1016/j.jsb.2016.06.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Briegel A, Ladinsky MS, Oikonomou C et al (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 3:e02151. https://doi.org/10.7554/eLife.02151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51. https://doi.org/10.1016/j.jsb.2005.07.007

    Article  PubMed  Google Scholar 

  19. Zheng QS, Braunfeld MB, Sedat JW, Agard DA (2004) An improved strategy for automated electron microscopic tomography. J Struct Biol 147:91–101. https://doi.org/10.1016/j.jsb.2004.02.005

    Article  PubMed  Google Scholar 

  20. Kremer J, Mastronarde D, McIntosh J (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  21. Nicastro D, Schwartz C, Pierson J et al (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948. https://doi.org/10.1126/science.1128618

    Article  CAS  PubMed  Google Scholar 

  22. Suloway C, Shi J, Cheng A et al (2009) Fully automated, sequential tilt-series acquisition with Leginon. J Struct Biol 167:11–18. https://doi.org/10.1016/j.jsb.2009.03.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ding HJ, Oikonomou CM, Jensen GJ (2015) The Caltech tomography database and automatic processing pipeline. J Struct Biol 192:279–286. https://doi.org/10.1016/j.jsb.2015.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Russo CJ, Passmore LA (2014) Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380. https://doi.org/10.1126/science.1259530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14:375–379. https://doi.org/10.1017/S1431927608080781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jain T, Sheehan P, Crum J et al (2012) Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179:68–75. https://doi.org/10.1016/j.jsb.2012.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cao M, Takaoka A, Zhang H-B, Nishi R (2011) An automatic method of detecting and tracking fiducial markers for alignment in electron tomography. J Electron Microsc 60:39–46. https://doi.org/10.1093/jmicro/dfq076

    Article  CAS  Google Scholar 

  28. Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197:102–113. https://doi.org/10.1016/j.jsb.2016.07.011

    Article  PubMed  Google Scholar 

  29. Morado DR, Hu B, Liu J (2016) Using tomoauto – a protocol for high-throughput automated cryo-electron tomography. J Vis Exp:e53608. https://doi.org/10.3791/53608

  30. Bharat TAM, Scheres SHW (2016) Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11:2054–2065. https://doi.org/10.1038/nprot.2016.124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

LH was supported by a Biotechnology and Biological Sciences Research Council postgraduate training award and Biotechnology and Biological Sciences Research Council Grant BB/L023091/1 to MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Beeby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henderson, L.D., Beeby, M. (2018). High-Throughput Electron Cryo-tomography of Protein Complexes and Their Assembly. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics