Correlative 3D Structured Illumination Microscopy and Single-Molecule Localization Microscopy for Imaging Cancer Invasion

  • Shannon J L. Pinnington
  • John F. Marshall
  • Ann P. Wheeler
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)


Super-resolution microscopy methods enable resolution of biological molecules in their cellular or tissue context at the nanoscale. Different methods have their strengths and weaknesses. Here we present a method that enables correlative confocal, structured illumination microscopy (SIM) and single-molecule localization microscopy (SMLM) imaging of structures involved in formation of invadopodia on the same sample. This enables up to four colors to be visualized in three dimensions at a resolution of between 120 and 10 nm for SIM and SMLM, respectively.

Key words

Invasion Microscopy Super-resolution Cells 


  1. 1.
    Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124(Pt 10):1607–1611. 124/10/1607 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753. 1146598 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813. 1153529 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. 1127344 [pii] CrossRefPubMedGoogle Scholar
  5. 5.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. nmeth929 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009. nprot.2011.336 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049. CrossRefPubMedGoogle Scholar
  8. 8.
    Hosny NA, Song M, Connelly JT, Ameer-Beg S, Knight MM, Wheeler AP (2013) Super-resolution imaging strategies for cell biologists using a spinning disk microscope. PLoS One 8(10):e74604. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de Rooij J, Kerstens A, Danuser G, Schwartz MA, Waterman-Storer CM (2005) Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J Cell Biol 171(1):153–164. jcb.200506152 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8(5):1558–1570. CrossRefPubMedGoogle Scholar
  11. 11.
    Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23(2):97–105. CrossRefPubMedGoogle Scholar
  12. 12.
    Destaing O, Block MR, Planus E, Albiges-Rizo C (2011) Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 23(5):597–606. S0955-0674(11)00050-0 [pii]CrossRefPubMedGoogle Scholar
  13. 13.
    McCutchen CW (1967) Superresolution in microscopy and the Abbe resolution limit. J Opt Soc Am 57(10):1190–1192CrossRefPubMedGoogle Scholar
  14. 14.
    Demmerle J, Innocent C, North AJ, Ball G, Müller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L (2017) Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 12(5):988–1010. CrossRefPubMedGoogle Scholar
  15. 15.
    Olivier N, Keller D, Rajan VS, Gönczy P, Manley S (2013) Simple buffers for 3D STORM microscopy. Biomed Opt Express 4(6):885–899. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12(11):1065–1071. CrossRefPubMedGoogle Scholar
  17. 17.
    Thomas GJ, Hart IR, Speight PM, Marshall JF (2002) Binding of TGF-beta1 latency-associated peptide (LAP) to alpha(v)beta6 integrin modulates behaviour of squamous carcinoma cells. Br J Cancer 87(8):859–867. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Royer LA, Weigert M, Günther U, Maghelli N, Jug F, Sbalzarini IF, Myers EW (2015) ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat Methods 12(6):480–481. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shannon J L. Pinnington
    • 1
  • John F. Marshall
    • 2
  • Ann P. Wheeler
    • 1
  1. 1.Advanced Imaging Resource, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
  2. 2.Barts Cancer Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations