Skip to main content

Dual-Color and 3D Super-Resolution Microscopy of Multi-protein Assemblies

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Breaking the resolution limit of conventional microscopy by super-resolution microscopy (SRM) led to many new biological insights into protein assemblies at the nanoscale. Here we provide detailed protocols for single-molecule localization microscopy (SMLM) to image the structure of a protein complex. As examples, we show how to acquire single- and dual-color super-resolution images of the nuclear pore complex (NPC) and dual-color 3D data on actin and paxillin in focal adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamanaka M, Smith NI, Fujita K (2014) Introduction to super-resolution microscopy. Microscopy (Oxf) 63:177–192. https://doi.org/10.1093/jmicro/dfu007

    Article  Google Scholar 

  2. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  3. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782. https://doi.org/10.1364/OL.19.000780

    Article  PubMed  CAS  Google Scholar 

  4. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24:954–956. https://doi.org/10.1364/OL.24.000954

    Article  PubMed  CAS  Google Scholar 

  5. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  7. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. https://doi.org/10.1529/biophysj.106.091116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795. https://doi.org/10.1038/nmeth929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916. https://doi.org/10.1073/pnas.0609643104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783. https://doi.org/10.1016/S0006-3495(02)75618-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shroff H, White H, Betzig E (2008) Photoactivated localization microscopy (PALM) of adhesion complexes. Curr Protoc Cell Biol Chapter 4:Unit 4.21–Unit 4.27. https://doi.org/10.1002/0471143030.cb0421s41

    Article  PubMed  Google Scholar 

  12. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47:617–644. https://doi.org/10.1109/T-AIEE.1928.5055024

    Article  Google Scholar 

  13. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89. https://doi.org/10.1038/nbt765

    Article  PubMed  CAS  Google Scholar 

  14. Gronemeyer T, Chidley C, Juillerat A et al (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316. https://doi.org/10.1093/protein/gzl014

    Article  PubMed  CAS  Google Scholar 

  15. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  PubMed  CAS  Google Scholar 

  16. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382. https://doi.org/10.1021/cb800025k

    Article  PubMed  CAS  Google Scholar 

  17. Lukinavičius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139. https://doi.org/10.1038/nchem.1546

    Article  PubMed  CAS  Google Scholar 

  18. Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584. https://doi.org/10.1038/nmeth.1991

    Article  PubMed  CAS  Google Scholar 

  19. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. https://doi.org/10.1126/science.1074952

    Article  PubMed  CAS  Google Scholar 

  20. McKinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133. https://doi.org/10.1038/nmeth.1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang M, Chang H, Zhang Y et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729. https://doi.org/10.1038/nmeth.2021

    Article  PubMed  CAS  Google Scholar 

  22. Gunewardene MS, Subach FV, Gould TJ et al (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101:1522–1528. https://doi.org/10.1016/j.bpj.2011.07.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McEvoy AL, Hoi H, Bates M et al (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7:e51314. https://doi.org/10.1371/journal.pone.0051314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753. https://doi.org/10.1126/science.1146598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Testa I, Wurm CA, Medda R et al (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694. https://doi.org/10.1016/j.bpj.2010.08.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shroff H, Galbraith CG, Galbraith JA et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104:20308–20313. https://doi.org/10.1073/pnas.0710517105

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tam J, Cordier GA, Borbely JS et al (2014) Cross-talk-free multi-color STORM imaging using a single fluorophore. PLoS One 9:e101772. https://doi.org/10.1371/journal.pone.0101772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Valley CC, Liu S, Lidke DS, Lidke KA (2015) Sequential superresolution imaging of multiple targets using a single fluorophore. PLoS One 10:e0123941. https://doi.org/10.1371/journal.pone.0123941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jungmann R, Avendaño MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318. https://doi.org/10.1038/nmeth.2835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813. https://doi.org/10.1126/science.1153529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pavani SRP, Thompson MA, Biteen JS et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106:2995–2999. https://doi.org/10.1073/pnas.0900245106

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shechtman Y, Sahl SJ, Backer AS, Moerner WE (2014) Optimal point spread function design for 3D imaging. Phys Rev Lett 113:133902. https://doi.org/10.1103/PhysRevLett.113.133902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mlodzianoski MJ, Juette MF, Beane GL, Bewersdorf J (2009) Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt Express 17:8264–8277. https://doi.org/10.1364/OE.17.008264

    Article  PubMed  CAS  Google Scholar 

  34. Hajj B, Wisniewski J, Beheiry El M et al (2014) Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. Proc Natl Acad Sci U S A 111:17480–17485. https://doi.org/10.1073/pnas.1412396111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nagorni M, Hell SW (1998) 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J Struct Biol 123:236–247. https://doi.org/10.1006/jsbi.1998.4037

    Article  PubMed  CAS  Google Scholar 

  36. Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nat Publ Group 468:580–584. https://doi.org/10.1038/nature09621

    Article  CAS  Google Scholar 

  37. Dudok B, Barna L, Ledri M et al (2015) Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 18:75–86. https://doi.org/10.1038/nn.3892

    Article  PubMed  CAS  Google Scholar 

  38. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456. https://doi.org/10.1126/science.1232251

    Article  PubMed  CAS  Google Scholar 

  39. Suleiman H, Zhang L, Roth R et al (2013) Nanoscale protein architecture of the kidney glomerular basement membrane. elife 2:e01149. https://doi.org/10.7554/eLife.01149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Szymborska A, de Marco A, Daigle N et al (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658. https://doi.org/10.1126/science.1240672

    Article  PubMed  CAS  Google Scholar 

  41. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188. https://doi.org/10.1038/nmeth.1841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Edelstein AD, Tsuchida MA, Amodaj N et al (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1:10. https://doi.org/10.14440/jbm.2014.36

    Article  Google Scholar 

  43. Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wolter S, Löschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041. https://doi.org/10.1038/nmeth.2224

    Article  PubMed  CAS  Google Scholar 

  45. Izeddin I, Boulanger J, Racine V et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20:2081–2095. https://doi.org/10.1364/OE.20.002081

    Article  PubMed  CAS  Google Scholar 

  46. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7:373–375. https://doi.org/10.1038/nmeth.1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ong WQ, Citron YR, Schnitzbauer J et al (2015) Heavy water: a simple solution to increasing the brightness of fluorescent proteins in super-resolution imaging. Chem Commun (Camb) 51:13451–13453. https://doi.org/10.1039/c5cc04575d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ulf Matti for experimental assistance and Edward Lemke for the Flp-In™ T-Rex™ 293 cell line. This work was supported by EMBL International PhD Programme fellowships (P.H. and M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Ries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoess, P., Mund, M., Reitberger, M., Ries, J. (2018). Dual-Color and 3D Super-Resolution Microscopy of Multi-protein Assemblies. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics