Skip to main content

Fragment-Based Ligand Designing

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Fragment-based drug design strategies have been used in drug discovery since it was first demonstrated using experimental structural biology techniques such as nuclear magnetic resonance (NMR) and X-ray crystallography. The underlying idea is that existing or new chemical entities with known desirable properties may serve both as tool compounds and as starting points for hit-to-lead expansion. Despite the recent advancements, there remain challenges to overcome, such as assembly of the synthetically feasible structures, development of scoring functions to correlate structure and their activities, and fine tuning of the promising molecules. This chapter first covers the theoretical background needed to understand the concepts and the challenges related to the field of study, followed by the description of important protocols and related software. Case studies are presented to demonstrate practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18(10):1105–1108

    Article  CAS  PubMed  Google Scholar 

  2. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim S-H, Schlessinger J, Zhang KYJ (2005) A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23(2):201–207

    Article  CAS  PubMed  Google Scholar 

  3. Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48(2):403–413. https://doi.org/10.1021/jm0495778

    Article  CAS  PubMed  Google Scholar 

  4. Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ, Garcia-Echeverria C, Chène P (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33–R33. https://doi.org/10.1186/bcr1996

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST (1995) De novo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem 38(3):466–472

    Article  CAS  PubMed  Google Scholar 

  6. Stewart KD, Loren S, Frey L, Otis E, Klinghofer V, Hulkower KI (1998) Discovery of a new cyclooxygenase-2 lead compound through 3-D database searching and combinatorial chemistry. Bioorg Med Chem Lett 8(5):529–534

    Article  CAS  PubMed  Google Scholar 

  7. Han Q, Dominguez C, Stouten PF, Park JM, Duffy DE, Galemmo RA Jr, Rossi KA, Alexander RS, Smallwood AM, Wong PC, Wright MM, Luettgen JM, Knabb RM, Wexler RR (2000) Design, synthesis, and biological evaluation of potent and selective amidino bicyclic factor Xa inhibitors. J Med Chem 43(23):4398–4415

    Article  CAS  PubMed  Google Scholar 

  8. Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44(26):4615–4627

    Article  CAS  PubMed  Google Scholar 

  9. Grzybowski BA, Ishchenko AV, Kim CY, Topalov G, Chapman R, Christianson DW, Whitesides GM, Shakhnovich EI (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci U S A 99(3):1270–1273. https://doi.org/10.1073/pnas.032673399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schneider G (2002) Trends in virtual combinatorial library design. Curr Med Chem 9:2095–2101

    Article  CAS  PubMed  Google Scholar 

  11. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  PubMed  Google Scholar 

  12. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  PubMed  Google Scholar 

  13. Richardson JS, Richardson DC (1989) The de novo design of protein structures. Trends Biochem Sci 14:304–309

    Article  CAS  PubMed  Google Scholar 

  14. Richardson JS (1992) Looking at proteins: representations, folding, packing, and design. Biophys J 63:1185–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bohm HJ, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1(3):217–224. https://doi.org/10.1016/j.ddtec.2004.10.009

    Article  PubMed  Google Scholar 

  16. Renner S, Schneider G (2006) Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 1(2):181–185. https://doi.org/10.1002/cmdc.200500005

    Article  CAS  PubMed  Google Scholar 

  17. Mauser H, Guba W (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 11(3):365–374

    CAS  PubMed  Google Scholar 

  18. Langdon SR, Ertl P, Brown N (2010) Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol Inform 29(5):366–385. https://doi.org/10.1002/minf.201000019

    Article  CAS  PubMed  Google Scholar 

  19. Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10(1):14–32

    Article  CAS  PubMed  Google Scholar 

  20. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663

    Article  CAS  PubMed  Google Scholar 

  21. Katiyar SP, Bakkiyaraj D, Karutha Pandian S (2011) Role of aromatic stack pairing at the catalytic site of gelonin protein. Biochem Biophys Res Commun 410(1):75–80. https://doi.org/10.1016/j.bbrc.2011.05.107

    Article  CAS  PubMed  Google Scholar 

  22. Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM (2004) PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57(1):51–86. https://doi.org/10.1002/prot.20195

    Article  CAS  PubMed  Google Scholar 

  23. Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9(15):659–669. https://doi.org/10.1016/S1359-6446(04)03196-4

    Article  CAS  PubMed  Google Scholar 

  24. Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP, Goyal S, Grover A, Sundar D (2015) Computational structure-based de novo design of hypothetical inhibitors against the anti-inflammatory target COX-2. PLoS One 10(8):e0134691. https://doi.org/10.1371/journal.pone.0134691

    Article  PubMed Central  PubMed  Google Scholar 

  25. Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46(2):699–707. https://doi.org/10.1021/ci0503560

    Article  CAS  PubMed  Google Scholar 

  26. Lloyd DG, Buenemann CL, Todorov NP, Manallack DT, Dean PM (2004) Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J Med Chem 47(3):493–496. https://doi.org/10.1021/jm034222u

    Article  CAS  PubMed  Google Scholar 

  27. Pasha FA, Muddassar M, Beg Y, Cho SJ (2008) DFT-based de novo QSAR of phenoloxidase inhibitors. Chem Biol Drug Des 71(5):483–493. https://doi.org/10.1111/j.1747-0285.2008.00651.x

    Article  CAS  PubMed  Google Scholar 

  28. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  CAS  PubMed  Google Scholar 

  29. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11(1):29–34. https://doi.org/10.1002/prot.340110104

    Article  CAS  PubMed  Google Scholar 

  30. Bohm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606

    Article  CAS  PubMed  Google Scholar 

  31. Mills JE, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10(6):607–622

    Article  PubMed  Google Scholar 

  32. Pearlman DA (1999) Free energy grids: a practical qualitative application of free energy perturbation to ligand design using the OWFEG method. J Med Chem 42(21):4313–4324

    Article  CAS  PubMed  Google Scholar 

  33. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  34. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  PubMed  Google Scholar 

  35. Kumar R, Sharma A, Varadwaj PK (2011) A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J Nat Sci Biol Med 2(2):168–173. https://doi.org/10.4103/0976-9668.92325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9(1):13–32

    Article  CAS  PubMed  Google Scholar 

  37. Pellegrini E, Field MJ (2003) Development and testing of a de novo drug-design algorithm. J Comput Aided Mol Des 17(10):621–641

    Article  CAS  PubMed  Google Scholar 

  38. Lewis RA (1990) Automated site-directed drug design: approaches to the formation of 3D molecular graphs. J Comput Aided Mol Des 4(2):205–210

    Article  CAS  PubMed  Google Scholar 

  39. Nishibata Y, Itai A (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47(43):8985–8990. https://doi.org/10.1016/S0040-4020(01)86503-0

    Article  CAS  Google Scholar 

  40. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model 51(5):1083–1091. https://doi.org/10.1021/ci100350u

    Article  CAS  PubMed  Google Scholar 

  41. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14(5):487–494

    Article  CAS  PubMed  Google Scholar 

  42. Globus A, Lawton J, Wipke T (1999) Automatic molecular design using evolutionary techniques. Nanotechnology 10(3):290–299

    Article  Google Scholar 

  43. Luo Z, Wang R, Lai L (1996) RASSE: a new method for structure-based drug design. J Chem Inf Comput Sci 36(6):1187–1194

    Article  CAS  PubMed  Google Scholar 

  44. Nachbar RB (2000) Molecular evolution: automated manipulation of hierarchical chemical topology and its application to average molecular structures. Genet Program Evol Mach 1(1–2):57–94. https://doi.org/10.1023/a:1010072431120

    Article  Google Scholar 

  45. Moore W Jr (2005) Maximizing discovery efficiency with a computationally driven fragment approach. Curr Opin Drug Discov Devel 8(3):355–364

    CAS  PubMed  Google Scholar 

  46. Mohamadi F, Richards NG, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467

    Article  CAS  Google Scholar 

  47. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106(3):765–784

    Article  CAS  Google Scholar 

  48. Ludington J, Fujimoto T, Hollinger F (2004) Determining partial atomic charges for fragments used in de novo drug design. Paper presented at the American Chemical Society, Washington, DC

    Google Scholar 

  49. Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical Monte Carlo simulation of ligand−protein binding. J Chem Inf Model 46(1):231–242

    Article  CAS  PubMed  Google Scholar 

  50. Clark M, Meshkat S, Talbot GT, Carnevali P, Wiseman JS (2009) Fragment-based computation of binding free energies by systematic sampling. J Chem Inf Model 49(8):1901–1913

    Article  CAS  PubMed  Google Scholar 

  51. Moffett K, Konteatis Z, Nguyen D, Shetty R, Ludington J, Fujimoto T, Lee K-J, Chai X, Namboodiri H, Karpusas M (2011) Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD). Bioorg Med Chem Lett 21(23):7155–7165

    Article  CAS  PubMed  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman MJR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Ciosloswki J, Stefanof BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1998) Gaussian 98, revision a. 7. Gaussian. Inc, Pittsburgh, PA

    Google Scholar 

  53. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta 28(3):213–222

    Article  CAS  Google Scholar 

  54. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  55. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank. Eur J Biochem 80(2):319–324

    Article  CAS  PubMed  Google Scholar 

  56. Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Annu 6(7–8):498–516

    Article  CAS  Google Scholar 

  57. de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13):630–646

    Article  PubMed  Google Scholar 

  58. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3(8):660–672

    Article  CAS  PubMed  Google Scholar 

  59. Kumar A, Voet A, Zhang K (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147

    Article  CAS  PubMed  Google Scholar 

  60. Schrödinger L (2013) Small-molecule drug discovery suite 2013–3: QikProp, version 3.8. Schrödinger, LLC, New York

    Google Scholar 

  61. Schrödinger Release (2014) 1: Desmond molecular dynamics system, version 3.7. DE Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version 3

    Google Scholar 

  62. Schrödinger Release (2013) 1: Schrödinger Suite 2013 Protein Preparation Wizard. Epik version 2:2013

    Google Scholar 

  63. Schrödinger L (2013) Small-molecule drug discovery suite 2013–3: Glide, version 6.1. Schrödinger, LLC, New York

    Google Scholar 

  64. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Mol Biol 9(4):268–272

    Article  CAS  Google Scholar 

  65. Guarnieri F (2015) Designing a small molecule erythropoietin mimetic. Methods Mol Biol 1289:185–210

    Article  CAS  PubMed  Google Scholar 

  66. Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, DeLora P, Zimany K, Travers H, Caulfield JP (2009) Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheumatol 60(2):335–344

    Article  CAS  Google Scholar 

  67. Kandil S, Biondaro S, Vlachakis D, Cummins A-C, Coluccia A, Berry C, Leyssen P, Neyts J, Brancale A (2009) Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. Bioorg Med Chem Lett 19(11):2935–2937

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durai Sundar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Katiyar, S.P., Malik, V., Kumari, A., Singh, K., Sundar, D. (2018). Fragment-Based Ligand Designing. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics