Skip to main content

Practices in Molecular Docking and Structure-Based Virtual Screening

  • Protocol
  • First Online:
Book cover Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Drug discovery has evolved significantly over the past two decades. Progress in key areas such as molecular and structural biology has contributed to the elucidation of the three-dimensional structure and function of a wide range of biological molecules of therapeutic interest. In this context, the integration of experimental techniques, such as X-ray crystallography, and computational methods, such as molecular docking, has promoted the emergence of several areas in drug discovery, such as structure-based drug design (SBDD). SBDD strategies have been broadly used to identify, predict and optimize the activity of small molecules toward a molecular target and have contributed to major scientific breakthroughs in pharmaceutical R&D. This chapter outlines molecular docking and structure-based virtual screening (SBVS) protocols used to predict the interaction of small molecules with the phosphatidylinositol-bisphosphate-kinase PI3Kδ, which is a molecular target for hematological diseases. A detailed description of the molecular docking and SBVS procedures and an evaluation of the results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456

    Article  CAS  PubMed  Google Scholar 

  2. Blaney J (2012) A very short history of structure-based design: how did we get here and where do we need to go? J Comput Aided Mol Des 26:13–14

    Article  CAS  PubMed  Google Scholar 

  3. Kinch MS, Hoyer DA (2015) History of drug development in four acts. Drug Discov Today 20:1163–1168

    Article  PubMed  Google Scholar 

  4. Kalyaanamoorthy S, Chen YP (2011) Structure-based drug design to augment hit discovery. Drug Discov Today 16:831–839

    Article  CAS  PubMed  Google Scholar 

  5. Honarparvar B, Govender T, Maguire GE et al (2014) Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem Rev 114:493–537

    Article  CAS  PubMed  Google Scholar 

  6. Eder J, Sedrani R, Wiesmann C (2014) The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 13:577–587

    Article  CAS  PubMed  Google Scholar 

  7. Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitchen DB, Decornez H, Furr JR et al (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira LG, dos Santos RN, Oliva G et al (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  Google Scholar 

  11. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    Article  CAS  PubMed  Google Scholar 

  12. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26:897–906

    Article  CAS  PubMed  Google Scholar 

  13. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  14. Gorelik B, Goldblum A (2008) High quality binding modes in docking ligands to proteins. Proteins 71:1373–1386

    Article  CAS  PubMed  Google Scholar 

  15. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  16. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  17. Santos RN, Andricopulo AD (2013) Physics and its interfaces with medicinal chemistry and drug design. Braz J Phys 43:268–280

    Article  Google Scholar 

  18. Foloppe N, Hubbard R (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13:3583–3608

    Article  CAS  PubMed  Google Scholar 

  19. Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  20. Murray C, Auton TR, Eldridge MD (1998) Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J Comput Aided Mol Des 12:503–519

    Article  CAS  PubMed  Google Scholar 

  21. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein–ligand interactions: I. Derivation of interaction potentials. J Comput Chem 27:1866–1875

    Article  CAS  PubMed  Google Scholar 

  22. Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50:1561–1573

    Article  CAS  PubMed  Google Scholar 

  23. Ruvinsky AM (2007) Role of binding entropy in the refinement of protein–ligand docking predictions: analysis based on the use of 11 scoring functions. J Comput Chem 28:1364–1372

    Article  CAS  PubMed  Google Scholar 

  24. Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scior T, Bender A, Tresadern G, Medina-Franco JL, Martínez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881

    Article  CAS  PubMed  Google Scholar 

  26. Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moura Barbosa AJ, Del Rio A (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 12:866–877

    Article  PubMed  Google Scholar 

  28. Rose PW, Prlić A, Ali A et al (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45:D271–D281

    Article  CAS  PubMed  Google Scholar 

  29. Valli M, dos Santos RN, Figueira LD et al (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76:439–444

    Article  CAS  PubMed  Google Scholar 

  30. Williams AJ (2008) Public chemical compound databases. Curr Opin Drug Discov Devel 11:393–404

    CAS  PubMed  Google Scholar 

  31. Nicola G, Liu T, Gilson MK (2012) Public domain databases for medicinal chemistry. J Med Chem 55:6987–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams A, Tkachenko V (2014) The Royal Society of Chemistry and the delivery of chemistry data repositories for the community. J Comput Aided Mol Des 28:1023–1030

    Article  CAS  PubMed  Google Scholar 

  33. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pirhadib S, Sunseria J, Koes DR (2016) Open source molecular modeling. J Mol Graph Model 69:127–143

    Article  Google Scholar 

  36. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  38. Knight ZA, Gonzalez B, Feldman ME et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu P, Liu T, Hu Y (2009) PI3K inhibitors for cancer therapy: what has been achieved so far? Curr Med Chem 16:916–930

    Article  CAS  PubMed  Google Scholar 

  40. Brana I, Siu LL (2012) Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment. BMC Med 10:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu M, Akinleye A, Zhu X (2013) Novel agents for chronic lymphocytic leukemia. J Hematol Oncol 6:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Graf SA, Gopal AK (2016) Idelalisib for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 17:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greenwell BI, Flowers CR, Blum KA et al (2017) Clinical use of PI3K inhibitors in B-cell lymphoid malignancies: today and tomorrow. Expert Rev Anticancer Ther 17(3):271–279. https://doi.org/10.1080/14737140.2017.1285702

    Article  CAS  PubMed  Google Scholar 

  44. Somoza JR, Koditek D, Villaseñor AG et al (2015) Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J Biol Chem 290:8439–8446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davis AM, Teague SJ, Kleywegt GJ (2003) Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed Engl 42:2718–2736

    Article  CAS  PubMed  Google Scholar 

  46. Sastry GM, Adzhigirey M, Day T (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  PubMed  Google Scholar 

  47. Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 1:45–54

    Article  CAS  PubMed  Google Scholar 

  48. Moda TL, Torres LG, Carrara AE et al (2008) PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics 24:2270–2271

    Article  CAS  PubMed  Google Scholar 

  49. Clark DE (2005) Computational prediction of ADMET properties: recent developments and future challenges. In: Dixon DA (ed) Annual reports in computational chemistry, vol 1. Elsevier, Amsterdam, pp 133–151

    Chapter  Google Scholar 

  50. Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    PubMed  Google Scholar 

  51. Roberts BC, Mancera RL (2008) Ligand−protein docking with water molecules. J Chem Inf Model 48:397–408

    Article  CAS  PubMed  Google Scholar 

  52. Kirchmair J, Spitzer GM, Liedl KR (2011) Consideration of water and solvation effects in virtual screening. In: Sotriffer C (ed) Virtual screening: principles, challenges, and practical guidelines. Wiley-VCH Verlag, Weinheim

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the State of Sao Paulo Research Foundation (FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo), grants 2015/13667-9, 2013/25658-9, and 2013/07600-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo G. Ferreira or Adriano D. Andricopulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

dos Santos, R.N., Ferreira, L.G., Andricopulo, A.D. (2018). Practices in Molecular Docking and Structure-Based Virtual Screening. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics