Skip to main content

Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Identification of drug targets and drug target interactions are important steps in the drug-discovery pipeline. Successful computational prediction methods can reduce the cost and time demanded by the experimental methods. Knowledge of putative drug targets and their interactions can be very useful for drug repurposing. Supervised machine learning methods have been very useful in drug target prediction and in prediction of drug target interactions. Here, we describe the details for developing prediction models using supervised learning techniques for human drug target prediction and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang S, Sim TB, Kim YS, Chang YT (2004) Tools for target identification and validation. Curr Opin Chem Biol 8:371–377

    Article  CAS  PubMed  Google Scholar 

  2. Howbrook DN, van der Valk AM, O'Shaughnessy MC, Sarker DK, Baker SC, Lloyd AW (2003) Developments in microarray technologies. Drug Discov Today 8:642–651

    Article  CAS  PubMed  Google Scholar 

  3. Vernell R, Helin K, Müller H (2003) Identification of target genes of the p16INK4A-pRB-E2F pathway. J Biol Chem 278:46124–46137

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20:225–229

    Article  CAS  PubMed  Google Scholar 

  5. Cutler P (2003) Protein arrays: the current state-of-the-art. Proteomics 3:3–18

    Article  CAS  PubMed  Google Scholar 

  6. Sem DS, Yu L, Coutts SM, Jack R (2001) Object-oriented approach to drug design enabled by NMR SOLVE: first real-time structural tool for characterizing protein–ligand interactions. J Cell Biochem 84:99–105

    Article  Google Scholar 

  7. Jackson PD, Harrington JJ (2005) High-throughput target discovery using cell-based genetics. Drug Discov Today 10:53–60

    Article  CAS  PubMed  Google Scholar 

  8. Lindsay MA (2005) Finding new drug targets in the 21st century. Drug Discov Today 10:1683–1687

    Article  CAS  PubMed  Google Scholar 

  9. Kumari P, Nath A, Chaube R (2015) Identification of human drug targets using machine-learning algorithms. Comput Biol Med 56:175–181

    Article  CAS  PubMed  Google Scholar 

  10. Han LY, Zheng CJ, Xie B, Jia J, Ma XH, Zhu F et al (2007) Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov Today 12:304–313

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Lai L (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics 8:353

    Article  PubMed Central  PubMed  Google Scholar 

  12. Perola E, Herman L, Weiss J (2012) Development of a rule-based method for the assessment of protein Druggability. J Chem Inf Model 52:1027–1038

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Altman RB (2014) Identifying Druggable targets by protein microenvironments matching: application to transcription factors. CPT Pharmacometrics Syst Pharmacol 3:e93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11:10–18

    Article  Google Scholar 

  15. Berthold MR, Cebron N, Dill F, Gabriel TR et al (2009) KNIME - the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11:26–31

    Article  Google Scholar 

  16. Hofmann M, Klinkenberg R (eds) (2013) RapidMiner: data mining use cases and business analytics applications. Chapman & Hall/ CRC, Boca Raton, FL

    Google Scholar 

  17. Cook D (2016) Practical machine learning with H2O: powerful, scalable techniques for deep learning and AI. O'Reilly Media, Boston

    Google Scholar 

  18. Pedregosa F, Varoquaux G, Gramfort A, Michel V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  19. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672

    Article  CAS  PubMed  Google Scholar 

  20. Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E et al (2008) SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 36:D919–D922

    Article  PubMed  Google Scholar 

  21. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y et al (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8:e60618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X et al (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:104

    Article  PubMed Central  PubMed  Google Scholar 

  24. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201

    Article  CAS  PubMed  Google Scholar 

  25. Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34:W32–W37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rao HB, Zhu F, Yang GB, Li ZR, Chen YZ (2011) Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 39:W385–W390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Du P, Wang X, Xu C, Gao Y (2012) PseAAC-builder: a cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Anal Biochem 425:117–119

    Article  CAS  PubMed  Google Scholar 

  28. Shen HB, Chou KC (2008) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    Article  CAS  PubMed  Google Scholar 

  29. Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:246–255

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC (2015) Pse-in-one: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ruiz-Blanco YB, Paz W, Green J, Marrero-Ponce Y (2015) ProtDCal: a program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinformatics 16:162

    Article  PubMed Central  PubMed  Google Scholar 

  32. Cao DS, Xu QS, Liang YZ (2013) Propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962

    Article  CAS  PubMed  Google Scholar 

  33. Xiao N, Cao DS, Zhu MF, Xu QS (2015) Protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 31:1857–1859

    Article  CAS  PubMed  Google Scholar 

  34. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

  35. Li ZR, Han LY, Xue Y, Yap CW, Li H, Jiang L (2007) MODEL—molecular descriptor lab: a web-based server for computing structural and physicochemical features of compounds. Biotechnol Bioeng 97:389–396

    Article  CAS  PubMed  Google Scholar 

  36. Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L (2008) Mold2, molecular descriptors from 2D structures for Chemoinformatics and Toxicoinformatics. J Chem Inf Comput Sci 48:1337–1344

    Article  CAS  Google Scholar 

  37. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Google Scholar 

  38. Witten IH, Frank E, Hall MA (eds) (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  39. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159

    Article  Google Scholar 

  40. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  41. Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379

    Article  CAS  PubMed  Google Scholar 

  42. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al (2009) Human protein reference database--2009 update. Nucleic Acids Res 37:D767–D772

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Partial support from UGC-CAS to RC is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nath, A., Kumari, P., Chaube, R. (2018). Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics