Skip to main content

Protein–Protein Docking in Drug Design and Discovery

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Protein–protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called “hot spots” in protein–protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein–protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein–protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein–protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein–protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein–protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein–protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreani J, Guerois R (2014) Evolution of protein interactions: from interactomes to interfaces. Arch Biochem Biophys 554:65–75. https://doi.org/10.1016/j.abb.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  2. Petta I, Lievens S, Libert C et al (2016) Modulation of protein-protein interactions for the development of novel therapeutics. Mol Ther J Am Soc Gene Ther 24:707–718. https://doi.org/10.1038/mt.2015.214

    Article  CAS  Google Scholar 

  3. Gromiha MM, Yugandhar K, Jemimah S (2016) Protein-protein interactions: scoring schemes and binding affinity. Curr Opin Struct Biol 44:31–38. https://doi.org/10.1016/j.sbi.2016.10.016

    Article  PubMed  Google Scholar 

  4. Moal IH, Moretti R, Baker D, Fernández-Recio J (2013) Scoring functions for protein-protein interactions. Curr Opin Struct Biol 23:862–867. https://doi.org/10.1016/j.sbi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  5. Huang S-Y (2015) Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov Today 20:969–977. https://doi.org/10.1016/j.drudis.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues JPGLM, Bonvin AMJJ (2014) Integrative computational modeling of protein interactions. FEBS J 281:1988–2003. https://doi.org/10.1111/febs.12771

    Article  CAS  PubMed  Google Scholar 

  7. Selent J, Kaczor AA (2011) Oligomerization of G protein-coupled receptors: computational methods. Curr Med Chem 18:4588–4605

    Article  CAS  PubMed  Google Scholar 

  8. Kaczor AA, Selent J, Poso A (2013) Structure-based molecular modeling approaches to GPCR oligomerization. Methods Cell Biol 117:91–104. https://doi.org/10.1016/B978-0-12-408143-7.00005-0

    Article  CAS  PubMed  Google Scholar 

  9. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  10. Wodak SJ, Janin J (1978) Computer analysis of protein-protein interaction. J Mol Biol 124:323–342

    Article  CAS  PubMed  Google Scholar 

  11. Janin J (2010) Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol Biosyst 6:2351–2362. https://doi.org/10.1039/c005060c

    Article  CAS  PubMed  Google Scholar 

  12. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095. https://doi.org/10.1002/prot.24428

    Article  CAS  PubMed  Google Scholar 

  13. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359–377. https://doi.org/10.1002/prot.25215

    Article  CAS  PubMed  Google Scholar 

  14. Bohnuud T, Luo L, Wodak SJ et al (2017) A benchmark testing ground for integrating homology modeling and protein docking. Proteins 85:10–16. https://doi.org/10.1002/prot.25063

    Article  CAS  PubMed  Google Scholar 

  15. Park H, Lee H, Seok C (2015) High-resolution protein-protein docking by global optimization: recent advances and future challenges. Curr Opin Struct Biol 35:24–31. https://doi.org/10.1016/j.sbi.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  16. Kaczor AA, Selent J, Sanz F, Pastor M (2013) Modeling complexes of transmembrane proteins: systematic analysis of protein-protein docking tools. Mol Inform 32:717–733. https://doi.org/10.1002/minf.201200150

    Article  CAS  PubMed  Google Scholar 

  17. Zacharias M (2010) Accounting for conformational changes during protein-protein docking. Curr Opin Struct Biol 20:180–186. https://doi.org/10.1016/j.sbi.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  18. Zacharias M (2003) Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci Publ Protein Soc 12:1271–1282. https://doi.org/10.1110/ps.0239303

    Article  CAS  Google Scholar 

  19. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120. https://doi.org/10.1006/jmbi.1997.1203

    Article  CAS  PubMed  Google Scholar 

  21. Vakser IA (1997) Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins (Suppl 1):226–230

    Google Scholar 

  22. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. https://doi.org/10.1093/nar/gkl206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Katchalski-Katzir E, Shariv I, Eisenstein M et al (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Berchanski A, Shapira B, Eisenstein M (2004) Hydrophobic complementarity in protein-protein docking. Proteins 56:130–142. https://doi.org/10.1002/prot.20145

    Article  CAS  PubMed  Google Scholar 

  25. Heifetz A, Katchalski-Katzir E, Eisenstein M (2002) Electrostatics in protein-protein docking. Protein Sci Publ Protein Soc 11:571–587

    Article  CAS  Google Scholar 

  26. Mandell JG, Roberts VA, Pique ME et al (2001) Protein docking using continuum electrostatics and geometric fit. Protein Eng 14:105–113

    Article  CAS  PubMed  Google Scholar 

  27. Roberts VA, Thompson EE, Pique ME et al (2013) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34:1743–1758. https://doi.org/10.1002/jcc.23304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wiehe K, Pierce B, Mintseris J et al (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–213. https://doi.org/10.1002/prot.20559

    Article  CAS  PubMed  Google Scholar 

  29. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406. https://doi.org/10.1002/prot.21117

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Lai L (2011) SDOCK: a global protein-protein docking program using stepwise force-field potentials. J Comput Chem 32:2598–2612. https://doi.org/10.1002/jcc.21839

    Article  CAS  PubMed  Google Scholar 

  31. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32:W96–W99. https://doi.org/10.1093/nar/gkh354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Comeau SR, Kozakov D, Brenke R et al (2007) ClusPro: performance in CAPRI rounds 6-11 and the new server. Proteins 69:781–785. https://doi.org/10.1002/prot.21795

    Article  CAS  PubMed  Google Scholar 

  33. Ritchie DW (2003) Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 52:98–106. https://doi.org/10.1002/prot.10379

    Article  CAS  PubMed  Google Scholar 

  34. Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25:2544–2551. https://doi.org/10.1093/bioinformatics/btp447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  36. de Vries SJ, van Dijk ADJ, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733. https://doi.org/10.1002/prot.21723

    Article  PubMed  Google Scholar 

  37. Hwang H, Vreven T, Janin J, Weng Z (2010) Protein-protein docking benchmark version 4.0. Proteins 78:3111–3114. https://doi.org/10.1002/prot.22830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Vajda S (2005) Classification of protein complexes based on docking difficulty. Proteins 60:176–180. https://doi.org/10.1002/prot.20554

    Article  CAS  PubMed  Google Scholar 

  39. Selent J, Kaczor AA, Guixà-González R et al (2013) Rational design of the survivin/CDK4 complex by combining protein-protein docking and molecular dynamics simulations. J Mol Model 19:1507–1514. https://doi.org/10.1007/s00894-012-1705-8

    Article  CAS  PubMed  Google Scholar 

  40. Renthal R (1999) Transmembrane and water-soluble helix bundles display reverse patterns of surface roughness. Biochem Biophys Res Commun 263:714–717. https://doi.org/10.1006/bbrc.1999.1439

    Article  CAS  PubMed  Google Scholar 

  41. Kaczor AA, Guixà-González R, Carrió P et al (2012) Fractal dimension as a measure of surface roughness of G protein-coupled receptors: implications for structure and function. J Mol Model 18:4465–4475. https://doi.org/10.1007/s00894-012-1431-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Suzuki Y (2017) Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin from docking simulation. Microbiol Immunol. https://doi.org/10.1111/1348-0421.12484

  43. Dar HA, Zaheer T, Paracha RZ, Ali A (2017) Structural analysis and insight into Zika virus NS5 mediated interferon inhibition. Infect Genet Evol 51:143–152. https://doi.org/10.1016/j.meegid.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  44. Antal Z, Szoverfi J, Fejer SN (2017) Predicting the initial steps of salt-stable cowpea chlorotic mottle virus capsid assembly with atomistic force fields. J Chem Inf Model 57:910–917. https://doi.org/10.1021/acs.jcim.7b00078

    Article  CAS  PubMed  Google Scholar 

  45. Hossain MS, Azad AK, Chowdhury PA, Wakayama M (2017) Computational identification and characterization of a promiscuous T-cell epitope on the extracellular protein 85B of mycobacterium spp. for peptide-based subunit vaccine design. Biomed Res Int 2017:4826030. https://doi.org/10.1155/2017/4826030

    PubMed Central  PubMed  Google Scholar 

  46. He Y, Xiang Z, Mobley HLT (2010) Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol 2010:297505. https://doi.org/10.1155/2010/297505

    PubMed Central  PubMed  Google Scholar 

  47. Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins (Suppl 1):215–220

    Google Scholar 

  48. Rawal L, Panwar D, Ali S (2017) Intermolecular interactions between DMα and DMβ proteins in BuLA-DM complex of water buffalo Bubalus bubalis. J Cell Biochem. https://doi.org/10.1002/jcb.26075

  49. Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. https://doi.org/10.1016/j.jmb.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  51. Sinha VK, Sharma OP, Kumar MS (2017) Insight into the intermolecular recognition mechanism involved in complement component 4 activation through serine protease-trypsin. J Biomol Struct Dyn:1–15. https://doi.org/10.1080/07391102.2017.1288658

  52. Prakash P, Sayyed-Ahmad A, Cho KJ et al (2017) Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers. Sci Rep 7:40109. https://doi.org/10.1038/srep40109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311. https://doi.org/10.1021/jm200371q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. https://doi.org/10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  55. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649. https://doi.org/10.1146/annurev.biochem.56.1.615

    Article  CAS  PubMed  Google Scholar 

  56. Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286. https://doi.org/10.1038/35067575

    Article  CAS  PubMed  Google Scholar 

  57. Ferre S, Casado V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434. https://doi.org/10.1124/pr.113.008052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. González-Maeso J (2011) GPCR oligomers in pharmacology and signaling. Mol Brain 4:20. https://doi.org/10.1186/1756-6606-4-20

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kniazeff J, Prézeau L, Rondard P et al (2011) Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther 130:9–25. https://doi.org/10.1016/j.pharmthera.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  60. Bellot M, Galandrin S, Boularan C et al (2015) Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol 11:271–279. https://doi.org/10.1038/nchembio.1766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Rashid AJ, So CH, Kong MMC et al (2007) D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654–659. https://doi.org/10.1073/pnas.0604049104

    Article  CAS  PubMed  Google Scholar 

  62. Han Y, Moreira IS, Urizar E et al (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695. https://doi.org/10.1038/nchembio.199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62:701–725. https://doi.org/10.1124/pr.110.002667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bouvier M, Hébert TE (2014) CrossTalk proposal: weighing the evidence for class A GPCR dimers, the evidence favours dimers. J Physiol 592:2439–2441. https://doi.org/10.1113/jphysiol.2014.272252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lambert NA, Javitch JA (2014) CrossTalk opposing view: weighing the evidence for class A GPCR dimers, the jury is still out. J Physiol 592:2443–2445. https://doi.org/10.1113/jphysiol.2014.272997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. James JR, Oliveira MI, Carmo AM et al (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006. https://doi.org/10.1038/nmeth978

    Article  CAS  PubMed  Google Scholar 

  67. Meyer BH, Segura J-M, Martinez KL et al (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A 103:2138–2143. https://doi.org/10.1073/pnas.0507686103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Gaitonde SA, Gonzá Lez-Maeso J (2017) Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 32:23–31. https://doi.org/10.1016/j.coph.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  69. Guidolin D, Agnati LF, Marcoli M et al (2014) G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 8222:1–19. https://doi.org/10.1517/14728222.2014.981155

    Google Scholar 

  70. Shonberg J, Scammells PJ, Capuano B (2011) Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 6:963–974. https://doi.org/10.1002/cmdc.201100101

    Article  CAS  PubMed  Google Scholar 

  71. Viñals X, Moreno E, Lanfumey L et al (2015) Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. https://doi.org/10.1371/journal.pbio.1002194

  72. Jastrzebska B, Chen Y, Orban T et al (2015) Disruption of rhodopsin dimerization with synthetic peptides targeting an interaction interface. J Biol Chem 290:25728–25744. https://doi.org/10.1074/jbc.M115.662684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wang J, He L, Combs C et al (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5:2474–2483. https://doi.org/10.1158/1535-7163.MCT-05-0261

    Article  CAS  PubMed  Google Scholar 

  74. Hebert TE, Moffett S, Morello JP et al (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392. https://doi.org/10.1074/jbc.271.27.16384

    Article  CAS  PubMed  Google Scholar 

  75. Khelashvili G, Dorff K, Shan J et al (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805. https://doi.org/10.1093/bioinformatics/btq264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Kufareva I, Katritch V, Participants of GPCR Dock 2013, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22:1120–1139. https://doi.org/10.1016/j.str.2014.06.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Casciari D, Seeber M, Fanelli F (2006) Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach. BMC Bioinformatics 7:340. https://doi.org/10.1186/1471-2105-7-340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dell’Orco D, Casciari D, Fanelli F (2008) Quaternary structure predictions and estimation of mutational effects on the free energy of dimerization of the OMPLA protein. J Struct Biol 163:155–162. https://doi.org/10.1016/j.jsb.2008.05.006

    Article  PubMed  Google Scholar 

  79. Kaczor AA, Guixà-González R, Carriõ P et al (2015) Multi-component protein – protein docking based protocol with external scoring for modeling dimers of g protein-coupled receptors. Mol Inform 34:246–255. https://doi.org/10.1002/minf.201400088

    Article  CAS  PubMed  Google Scholar 

  80. Chaudhury S, Berrondo M, Weitzner BD et al (2011) Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS One 6:e22477. https://doi.org/10.1371/journal.pone.0022477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Jörg M, Kaczor AA, Mak FS et al (2014) Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands. MedChemComm 5:891–898. https://doi.org/10.1039/C4MD00066H

    Article  Google Scholar 

  82. Kaczor AA, Jörg M, Capuano B (2016) The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics. J Mol Model 22:203. https://doi.org/10.1007/s00894-016-3065-2

    Article  PubMed Central  PubMed  Google Scholar 

  83. Viswanath S, Dominguez L, Foster LS et al (2015) Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. Proteins 83:2170–2185. https://doi.org/10.1002/prot.24934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. MacCallum JL, Bennett WFD, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377. https://doi.org/10.1085/jgp.200709745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Alford RF, Koehler Leman J, Weitzner BD et al (2015) An integrated framework advancing membrane protein modeling and design. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1004398

  86. Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Memdock: an α-helical membrane protein docking algorithm. Bioinformatics 32:2444–2450. https://doi.org/10.1093/bioinformatics/btw184

    Article  CAS  PubMed  Google Scholar 

  87. Guixà-González R, Javanainen M, Gómez-Soler M et al (2016) Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci Rep 6:19839. https://doi.org/10.1038/srep19839

    Article  PubMed Central  PubMed  Google Scholar 

  88. Tusnády GE, Dosztányi Z, Simon I (2005) TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21:1276–1277. https://doi.org/10.1093/bioinformatics/bti121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The chapter was developed using the equipment purchased within the project “The equipment of innovative laboratories doing research on new medicines used in the therapy of civilization and neoplastic diseases” within the Operational Program Development of Eastern Poland 2007–2013, Priority Axis I Modern Economy, operations I.3 Innovation promotion. T.S. and J.S. acknowledge support from Instituto de Salud Carlos III FEDER (CP12/03139 and PI15/00460). A.A.K., T.S. and J.S. participate in the European COST Action CM1207 (GLISTEN). T.S. acknowledges financial support from Hospital del Mar Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka A. Kaczor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaczor, A.A., Bartuzi, D., Stępniewski, T.M., Matosiuk, D., Selent, J. (2018). Protein–Protein Docking in Drug Design and Discovery. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics