Advertisement

Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand

  • Douglas E. V. Pires
  • Lisa M. Kaminskas
  • David B. Ascher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)

Abstract

A crucial factor for the approval and success of any drug is how it behaves in the body. Many drugs, however, do not reach the market due to poor efficacy or unacceptable side effects. It is therefore important to take these into consideration early in the drug development process, both in the prioritization of potential hits, and optimization of lead compounds. In silico approaches offer a cost and time-effective approach to rapidly screen and optimize pharmacokinetic and toxicity properties. Here we demonstrate the use of the comprehensive analysis system pkCSM, to allow early identification of potential problems, prioritization of hits, and optimization of leads.

Key words

ADMET predictions Computational medicinal chemistry Drug development Hit prioritization Lead optimization Pharmacokinetics Toxicity 

Notes

Acknowledgments

This work was funded by the Jack Brockhoff Foundation (JBF 4186, 2016) and a Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (MR/M026302/1). This research was supported by the Victorian Life Sciences Computation Initiative (VLSCI), an initiative of the Victorian Government, Australia, on its Facility hosted at the University of Melbourne (UOM0017). D.E.V.P. received support from the René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil. LMK was supported by a RD Wright Biomedical Career Development Fellowship from the National Health and Medical Research Council of Australia (APP1105383). DBA is supported by a C. J. Martin Research Fellowship from the National Health and Medical Research Council of Australia (APP1072476), and the Department of Biochemistry, University of Melbourne.

References

  1. 1.
    Khan MT (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295CrossRefPubMedGoogle Scholar
  2. 2.
    Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12(23–24):1013–1017CrossRefPubMedGoogle Scholar
  3. 3.
    Obrezanova O, Csanyi G, Gola JM, Segall MD (2007) Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47(5):1847–1857CrossRefPubMedGoogle Scholar
  4. 4.
    Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(Web Server issue):W53–W58CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Fröhlich H, Wegner JK, Sieker F, Zell A (2006) Kernel functions for attributed molecular graphs–a new similarity-based approach to ADME prediction in classification and regression. QSAR Comb Sci 25(4):317–326CrossRefGoogle Scholar
  6. 6.
    Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17(1–2):44–55CrossRefPubMedGoogle Scholar
  7. 7.
    Pires DE, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44(W1):W557–W561CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Guner OF, Bowen JP (2013) Pharmacophore modeling for ADME. Curr Top Med Chem 13(11):1327–1342CrossRefPubMedGoogle Scholar
  9. 9.
    Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Sigurdardottir AG, Winter A, Sobkowicz A, Fragai M, Chirgadze D, Ascher DB, Blundell TL, Gherardi E (2015) Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Chem Sci 6(11):6147–6157CrossRefGoogle Scholar
  12. 12.
    Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S, Fernando RN, De Bundel D, Ascher DB, Mendelsohn FA, Parker MW, Chai SY (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22(12):4209–4217CrossRefPubMedGoogle Scholar
  13. 13.
    Ascher DB, Wielens J, Nero TL, Doughty L, Morton CJ, Parker MW (2014) Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci Rep 4:4765CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43(Database issue):D439–D446CrossRefPubMedGoogle Scholar
  15. 15.
    Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJ (2015) Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm 12(2):432–443CrossRefPubMedGoogle Scholar
  16. 16.
    Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740CrossRefPubMedGoogle Scholar
  17. 17.
    Chai SY, Yeatman HR, Parker MW, Ascher DB, Thompson PE, Mulvey HT, Albiston AL (2008) Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase. BMC Neurosci 9(Suppl 2):S14CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Ascher DB, Cromer BA, Morton CJ, Volitakis I, Cherny RA, Albiston AL, Chai SY, Parker MW (2011) Regulation of insulin-regulated membrane aminopeptidase activity by its C-terminal domain. Biochemistry 50(13):2611–2622CrossRefPubMedGoogle Scholar
  19. 19.
    Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW (2015) Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci 24(2):190–199CrossRefPubMedGoogle Scholar
  20. 20.
    Silvino AC, Costa GL, Araujo FC, Ascher DB, Pires DE, Fontes CJ, Carvalho LH, Brito CF, Sousa TN (2016) Variation in human cytochrome P-450 drug-metabolism genes: a gateway to the understanding of plasmodium vivax relapses. PLoS One 11(7):e0160172CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Parker LJ, Italiano LC, Morton CJ, Hancock NC, Ascher DB, Aitken JB, Harris HH, Campomanes P, Rothlisberger U, De Luca A, Lo Bello M, Ang WH, Dyson PJ, Parker MW (2011) Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry 17(28):7806–7816CrossRefPubMedGoogle Scholar
  22. 22.
    Parker LJ, Bocedi A, Ascher DB, Aitken JB, Harris HH, Lo Bello M, Ricci G, Morton CJ, Parker MW (2017) Glutathione transferase P1-1 as an arsenic drug-sequestering enzyme. Protein Sci 26(2):317–326CrossRefPubMedGoogle Scholar
  23. 23.
    Jubb HC, Higueruelo AP, Ochoa-Montano B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol 429(3):365–371CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Pires DE, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 6:29575CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Pires DE, Blundell TL, Ascher DB (2015) Platinum: a database of experimentally measured effects of mutations on structurally defined protein-ligand complexes. Nucleic Acids Res 43(Database issue):D387–D391CrossRefPubMedGoogle Scholar
  26. 26.
    Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, Coeck N, Hill-Cawthorne GA, Nair MB, Mallard K, Ramsay A, Campino S, Hibberd ML, Pain A, Rigouts L, Clark TG (2016) Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 14:31CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Singh V, Donini S, Pacitto A, Sala C, Hartkoorn RC, Dhar N, Keri G, Ascher DB, Mondésert G, Vocat A, Lupien A, Sommer R, Vermet H, Lagrange S, Buechler J, Warner DF, McKinney JD, Pato J, Cole ST, Blundell TL, Rizzi M, Mizrahi V (2016) The inosine monophosphate dehydrogenase, GuaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect Dis 3(1):5–17. https://doi.org/10.1021/acsinfecdis.6b00102 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30(3):335–342CrossRefPubMedGoogle Scholar
  29. 29.
    Pires DE, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42(Web Server issue):W314–W319CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Pandurangan AP, Ascher DB, Thomas SE, Blundell TL (2017) Genomes, structural biology, and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans 45(2):303–311CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL (2017) SDM: a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39(Web Server issue):W215–W222. https://doi.org/10.1093/nar/gkx439 Google Scholar
  32. 32.
    Pires DE, Chen J, Blundell TL, Ascher DB (2016) In silico functional dissection of saturation mutagenesis: interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep 6:19848CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Ascher DB, Jubb HC, Pires DEV, Ochi T, Higueruelo A, Blundell TL (2015) Protein-protein interactions: structures and druggability. In: Scapin G, Patel D, Arnold E (eds) Multifaceted roles of crystallography in modern drug discovery. Springer Netherlands, Dordrecht, pp 141–163Google Scholar
  34. 34.
    Jubb H, Blundell TL, Ascher DB (2015) Flexibility and small pockets at protein-protein interfaces: new insights into druggability. Prog Biophys Mol Biol 119(1):2–9CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Pires DE, Ascher DB (2017) mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx236
  36. 36.
    Pires DE, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44(W1):W469–W473CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montano B, Blundell TL, Ascher DB (2017) Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. Prog Biophys Mol Biol 128:3–13. https://doi.org/10.1016/j.pbiomolbio.2016.10.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Douglas E. V. Pires
    • 1
  • Lisa M. Kaminskas
    • 2
  • David B. Ascher
    • 3
    • 4
  1. 1.Centro de Pesquisas René Rachou, FIOCRUZBelo HorizonteBrazil
  2. 2.School of Biomedical SciencesUniversity of QueenslandSt. LuciaAustralia
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleAustralia
  4. 4.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations