Skip to main content

H2S Delivery from Aromatic Peptide Amphiphile Hydrogels

  • Protocol
  • First Online:
Biomaterials for Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1758))

  • 1725 Accesses

Abstract

Hydrogels are materials composed mostly of water that have found use in a wide variety of applications, including tissue engineering and regenerative medicine. Aromatic peptide amphiphiles can be designed to self-assemble in aqueous solution into one-dimensional aggregates that entangle to form hydrogels with very high water content (>99 wt. %). Here, we describe the synthesis of an aromatic peptide amphiphile designed to release hydrogen sulfide (H2S), a vital biological signaling gas with significant therapeutic potential. Peptide synthesis, purification, aliquotting, and procedures for measuring H2S release are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R (2012) Physiological implications of hydrogen sulfide. A whiff of exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  Google Scholar 

  2. Wang XH et al (2013) Dysregulation of cystathionine gamma-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262

    Article  CAS  Google Scholar 

  3. Szabo C, Wang R, Jeschke MG (2009) Hydrogen sulfide is an engeneous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21977

    Article  Google Scholar 

  4. Zhao W, Zhang J, Lu Y (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  CAS  Google Scholar 

  5. Bhatia M (2015) H2S and inflammation: an overview. Handb Exp Pharmacol 230:165–180

    Google Scholar 

  6. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuro modulator. J Neurosci 16:1066–1071

    Article  CAS  Google Scholar 

  7. Yang G et al (2007) H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282:16567–16576

    Article  CAS  Google Scholar 

  8. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  9. Rajangam K et al (2008) Peptide amphiphile nanostructure-heparin interactions and their relationship to bioactivity. Biomaterials 29:3298–3305

    Article  CAS  Google Scholar 

  10. Gao J, Zheng W, Zhang J, Guan D, Yang Z, Kong D, Zhao Q (2013) Enzyme-controllable delivery of nitric oxide from a molecular hydrogel. Chem Commun 49:9173–9175

    Article  CAS  Google Scholar 

  11. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    Article  CAS  Google Scholar 

  12. Legigan T et al (2012) The first generation of β-galactosidase-responsive prodrugs designed for the selective treatment of solid tumors in pro-drug monotherepy. Angew Chem 51:11606–11610

    Article  CAS  Google Scholar 

  13. Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43:8150–8177

    Article  CAS  Google Scholar 

  14. Carter JM et al (2015) Peptide-based hydrogen sulphide-releasing gels. Chem Commun 51:13131–13134

    Article  CAS  Google Scholar 

  15. Foster JC et al (2014) S-aroylthiooximes: a facile route to hydrogen sulfide releasing compounds with structure-dependent release kinetics. Org Lett 16:1558–1561

    Article  CAS  Google Scholar 

  16. Wellings DA, Atherton E (1997) Standard Fmoc protocols. Method Enzymol 289:44–77

    Article  CAS  Google Scholar 

  17. Pezacki JP et al (2012) Silicon and silicon oxide surface modification using thiamine-catalyzed benzoin condensations. Can J Chem 90:262–270

    Article  Google Scholar 

  18. Zhao Y, Wang H, Xian M (2011) Cysteine-activated hydrogen sulfide (H2S) donors. J Am Chem Soc 133:15–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Grant DMR-1454754 and the Virginia Tech Institute for Critical Technologies and Applied Science (JFC12-256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Matson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaur, K., Qian, Y., Matson, J.B. (2018). H2S Delivery from Aromatic Peptide Amphiphile Hydrogels. In: Chawla, K. (eds) Biomaterials for Tissue Engineering. Methods in Molecular Biology, vol 1758. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7741-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7741-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7739-0

  • Online ISBN: 978-1-4939-7741-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics