Skip to main content

Navigating Xenbase: An Integrated Xenopus Genomics and Gene Expression Database

  • Protocol
  • First Online:
Eukaryotic Genomic Databases

Abstract

Xenbase is the Xenopus model organism database (www.xenbase.org), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon JB (1960) The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J Embryol Exp Morphol 8:505–526

    PubMed  CAS  Google Scholar 

  2. Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182(4627):64–65

    Article  CAS  PubMed  Google Scholar 

  3. Sater AK, Moody SA (2017) Using Xenopus to understand human disease and developmental disorders. Genesis 55(1-2). https://doi.org/10.1002/dvg.22997

    Article  Google Scholar 

  4. Bowes JB, Snyder KA, Segerdell E, Gibb R, Jarabek C, Noumen E, Pollet N, Vize PD (2008) Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res 36(Database issue):D761–D767. https://doi.org/10.1093/nar/gkm826

    Article  PubMed  CAS  Google Scholar 

  5. Karimi K, Vize PD (2014) The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud. Database (Oxford) 2014:bau108. https://doi.org/10.1093/database/bau108

    Article  CAS  Google Scholar 

  6. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978):633–636. https://doi.org/10.1126/science.1183670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343. https://doi.org/10.1038/nature19840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vize PD, Liu Y, Karimi K (2015) Database and informatic challenges in representing both diploid and tetraploid Xenopus species in Xenbase. Cytogenet Genome Res 145(3-4):278–282. https://doi.org/10.1159/000430427

    Article  PubMed  Google Scholar 

  9. Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M (2015) A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res 145(3-4):187–191. https://doi.org/10.1159/000381292

    Article  PubMed  Google Scholar 

  10. Segerdell E, Bowes JB, Pollet N, Vize PD (2008) An ontology for Xenopus anatomy and development. BMC Dev Biol 8:92. https://doi.org/10.1186/1471-213X-8-92

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566. https://doi.org/10.1038/nprot.2013.092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Owens ND, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KW, Khokha MK (2016) Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep 14(3):632–647. https://doi.org/10.1016/j.celrep.2015.12.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20(4):483–496. PubMed ID: 21497761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, Lim N, Lin JC, Taverner N, Amaya E, Papalopulu N, Smith JC, Zorn AM, Harland RM, Grammer TC (2002) Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 225(4):499–510. https://doi.org/10.1002/dvdy.10184

    Article  PubMed  CAS  Google Scholar 

  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  16. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19(9):1630–1638. https://doi.org/10.1101/gr.094607.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Zweig AS, Karolchik D, Kent WJ (2014) Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30(7):1003–1005. https://doi.org/10.1093/bioinformatics/btt637

    Article  CAS  PubMed  Google Scholar 

  18. Ciau-Uitz A, Pinheiro P, Kirmizitas A, Zuo J, Patient R (2013) VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus. Development 140(12):2632–2642. https://doi.org/10.1242/dev.090829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Parain K, Mazurier N, Bronchain O, Borday C, Cabochette P, Chesneau A, Colozza G, El Yakoubi W, Hamdache J, Locker M, Gilchrist MJ, Pollet N, Perron M (2012) A large scale screen for neural stem cell markers in Xenopus retina. Dev Neurobiol 72(4):491–506. https://doi.org/10.1002/dneu.20973

    Article  PubMed  CAS  Google Scholar 

  20. Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9(5):R84. https://doi.org/10.1186/gb-2008-9-5-r84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Muller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS (2016) Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 18(12):1269–1280. https://doi.org/10.1038/ncb3437

    Article  PubMed  CAS  Google Scholar 

  22. Rana AA, Collart C, Gilchrist MJ, Smith JC (2006) Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. PLoS Genet 2(11):e193. https://doi.org/10.1371/journal.pgen.0020193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gilchrist MJ, Pollet N (2012) Databases of gene expression in Xenopus development. Methods Mol Biol 917:319–345. https://doi.org/10.1007/978-1-61779-992-1_19

    Article  PubMed  CAS  Google Scholar 

  24. Ahmed A, Ward NJ, Moxon S, Lopez-Gomollon S, Viaut C, Tomlinson ML, Patrushev I, Gilchrist MJ, Dalmay T, Dotlic D, Munsterberg AE, Wheeler GN (2015) A database of microRNA expression patterns in Xenopus laevis. PLoS One 10(10):e0138313. https://doi.org/10.1371/journal.pone.0138313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA (2009) Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 19(10):1766–1775. https://doi.org/10.1101/gr.093054.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zahn N, Levin M, Adams DS (2017) The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development 144(15):2708–2713. PubMed ID: 28765211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Pub, New York, NY

    Google Scholar 

  28. Moody SA (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119(2):560–578

    Article  CAS  PubMed  Google Scholar 

  29. Moody SA (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122(2):300–319

    Article  CAS  PubMed  Google Scholar 

  30. Bauer DV, Huang S, Moody SA (1994) The cleavage stage origin of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120(5):1179–1189

    PubMed  CAS  Google Scholar 

  31. Segerdell E, Ponferrada VG, James-Zorn C, Burns KA, Fortriede JD, Dahdul WM, Vize PD, Zorn AM (2013) Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase. J Biomed Semantics 4(1):31. https://doi.org/10.1186/2041-1480-4-31

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51(12):827–834. https://doi.org/10.1002/dvg.22719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK (2015) CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408(2):196–204. https://doi.org/10.1016/j.ydbio.2015.11.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220. https://doi.org/10.1038/79951

    Article  CAS  PubMed  Google Scholar 

  35. Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–134. https://doi.org/10.1006/dbio.2000.9720

    Article  PubMed  CAS  Google Scholar 

  36. Nutt SL, Bronchain OJ, Hartley KO, Amaya E (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30(3):110–113

    Article  CAS  PubMed  Google Scholar 

  37. Grant IM, Balcha D, Hao T, Shen Y, Trivedi P, Patrushev I, Fortriede JD, Karpinka JB, Liu L, Zorn AM, Stukenberg PT, Hill DE, Gilchrist MJ (2015) The Xenopus ORFeome: a resource that enables functional genomics. Dev Biol 408(2):345–357. https://doi.org/10.1016/j.ydbio.2015.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Knowlton MN, Smith CL (2017) Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species. Mamm Genome 28:367. https://doi.org/10.1007/s00335-017-9698-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Funding for Xenbase is provided by the Eunice and Kennedy Shriver National Institute of Child Health and Human Development, grant P41 HD064556 (Zorn and Vize, Joint-PIs). We thank James Coulombe (NIH/NICHD), the Xenbase EAB members, and Xenopus researchers around the world for continued support and feedback that help us set priorities for development and new features on Xenbase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina James-Zorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

James-Zorn, C. et al. (2018). Navigating Xenbase: An Integrated Xenopus Genomics and Gene Expression Database. In: Kollmar, M. (eds) Eukaryotic Genomic Databases. Methods in Molecular Biology, vol 1757. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7737-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7737-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7736-9

  • Online ISBN: 978-1-4939-7737-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics