Target Therapy for Esophageal Adenocarcinoma

  • Ka-On Lam
  • Dora L. W. Kwong
Part of the Methods in Molecular Biology book series (MIMB, volume 1756)


Adenocarcinoma of the esophagus is a deadly disease and median survival of patients with metastatic disease is around 1 year only. There is an unmet need to personalize treatment by identifying molecular targets and respective target therapy in esophageal adenocarcinoma. There has been success in targeting the human epidermal growth factor receptor 2 (HER2) and vasoendothelial growth factor (VEGF) pathway while more failures were encountered in the clinical studies targeting epidermal growth factor (EGFR), mammalian target of rapamycin (mTOR), and mesenchymal-epithelial transition (MET). Studies using immune-checkpoint inhibitors have shown early success, and we await mature data for clinical application. In the chapter, the target therapy and novel treatment strategy will be reviewed. In the future, it is hoped that advances in translational research in targeted therapy against esophageal adenocarcinoma will bring about new progress in clinical practice.

Key words

Esophageal Esophagogastric Adenocarcinoma Palliative Target therapy Immunotherapy 


  1. 1.
    Wagner AD, Unverzagt S, Grothe W (2010) Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 17:CD004064Google Scholar
  2. 2.
    Cunningham D, Starling N, Rao S et al (2008) Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358:36–46CrossRefPubMedGoogle Scholar
  3. 3.
    Koizumi W, Narahara H, Hara T et al (2008) S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol 9:215–221CrossRefPubMedGoogle Scholar
  4. 4.
    Van Cutsem E, Moiseyenko VM, Tjulandin S et al (2006) Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol 24:4991–4997CrossRefPubMedGoogle Scholar
  5. 5.
    McCormick Matthews LH, Noble F, Tod J et al (2015) Systematic review and meta-analysis of immunohistochemical prognostic biomarkers in resected esophageal adenocarcinoma. Br J Cancer 113:107–118. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    The Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of esophageal carcinoma. Nature 541:169–175CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gravalos C, Jimeno A (2008) HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 19:1523–1529CrossRefPubMedGoogle Scholar
  8. 8.
    Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-esophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697CrossRefGoogle Scholar
  9. 9.
    Hecht JR, Bang YJ, Qin SK et al (2016) Lapatinib in combination with capecitabine plus oxaliplatin in HER2-positive advanced or metastatic gastric, esophageal, or gastresophageal adenocarcinoma: (TRIO-013/LOGiC) a randomized phase III trial. J Clin Oncol 34:443–451CrossRefPubMedGoogle Scholar
  10. 10.
    Swain SM, Baselga J, Kim SB et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372:724–734CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shitara K, Yatabe Y, Matsuo K et al (2013) Prognosis of patients with advanced gastric cancer by HER2 status and trastuzumab treatment. Gastric Cancer 16:261–267CrossRefPubMedGoogle Scholar
  12. 12.
    Li Q, Jiang H, Li H et al (2016) Efficacy of trastuzumab beyond progression in HER2 positive advanced gastric cancer: a multicenter prospective observational cohort study. Oncotarget 7:50656–50665PubMedPubMedCentralGoogle Scholar
  13. 13.
    Al-Shamsi HO, Fahmawi Y, Dahbour I et al (2016) Continuation of trastuzumab beyond disease progression in HER2-positive metastatic gastric cancer: the MD Anderson experience. J Gastrointest Oncol 7:499–505CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Satoh T, Xu RH, Chung HC et al (2014) Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—a randomized, phase III study. J Clin Oncol 32:2039–2049CrossRefPubMedGoogle Scholar
  15. 15.
    Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290CrossRefPubMedGoogle Scholar
  16. 16.
    Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Krop IE, Kim S, González-Martín A et al (2014) Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 15:689–699CrossRefPubMedGoogle Scholar
  18. 18.
    Thuss-Patience PC, Shah MA, Ohtsu A et al (2017) Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-esophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. Published Online March 23, 2017.
  19. 19.
    Lordick F, Kang YK, Chung HC et al (2013) Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 14:490–499CrossRefPubMedGoogle Scholar
  20. 20.
    Waddell T, Chau I, Cunningham D et al (2013) Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced esophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol 14:481–489CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Park DJ, Thomas NJ, Yoon C et al (2015) Vascular endothelial growth factor a inhibition in gastric cancer. Gastric Cancer 18:33–42CrossRefPubMedGoogle Scholar
  22. 22.
    Ohtsu A, Shah MA, Van Cutsem E et al (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29:3968–3976CrossRefPubMedGoogle Scholar
  23. 23.
    Hacker UT, Escalona-Espinosa L, Consalvo N et al (2016) Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: results from the randomised phase III AVAGAST trial. Br J Cancer 114:855–862CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shen L, Li J, Xu J et al (2014) Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastresophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer 18:168–176CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fuchs CS, Tomasek J, Yong CJ et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastresophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383:31–39CrossRefPubMedGoogle Scholar
  26. 26.
    Wilke H, Muro K, Van Cutsem E et al (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-esophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15:1224–1235CrossRefPubMedGoogle Scholar
  27. 27.
    Li J, Qin S, Xu J et al (2016) Randomized, double-blind, placebo-controlled phase III trial of Apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastresophageal junction. J Clin Oncol 34:1448–1454CrossRefPubMedGoogle Scholar
  28. 28.
    Sasore T, Kennedy B (2014) Deciphering combinations of PI3K/AKT/mTOR pathway drugs augmenting anti-angiogenic efficacy in vivo. PLoS One 9:e105280CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456CrossRefPubMedGoogle Scholar
  30. 30.
    Baselga J, Campone M, Piccart M et al (2011) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Doi T, Muro K, Boku N et al (2010) Multicenter phase II study of everolimus in patients with previously treatedmetastatic gastric cancer. J Clin Oncol 28:1904–1910CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ohtsu A, Ajani JA, Bai YX et al (2013) Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 31:3935–3943CrossRefGoogle Scholar
  33. 33.
    Kim G, Ison G, McKee AE et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21:4257–4261CrossRefGoogle Scholar
  34. 34.
    Bang YJ, Im SA, Lee KW et al (2015) Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 33:3858–3865CrossRefPubMedGoogle Scholar
  35. 35.
    Bang YJ, Boku N, Chin K et al (2016) Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy: phase III GOLD study. Ann Oncol 27(Suppl 6):LBA25Google Scholar
  36. 36.
    Niimi T, Nagashima K, Ward JM et al (2001) Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol 21:7380–7390CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lordick F, Schuler M, Al-Batran S-E et al (2016) Claudin 18.2—a novel treatment target in the multicenter, randomized, phase II FAST study, a trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without the antiCLDN18.2 antibody IMAB362 as 1st line therapy in advanced gastric and gastresophageal junction (GEJ) cancer. Ann Oncol 27(Suppl 9):ix68–ix85. CrossRefGoogle Scholar
  38. 38.
    Mariani M, McHugh M, Petrillo M et al (2014) HGF/c-Met axis drives cancer aggressiveness in the neo-adjuvant setting of ovarian cancer. Oncotarget 5:4855–4867CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu JG, Yu JW, Wu HB et al (2014) Expressions and clinical significances of c-MET, p-MET and E2f-1 in human gastric carcinoma. BMC Res Notes 7:6CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Iveson T, Donehower RC, Davidenko I (2014) Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or esophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 15:1007–1018CrossRefPubMedGoogle Scholar
  41. 41.
    Cunningham D, Tebbutt NC, Davidenko I et al (2015) Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastresophageal junction (G/GEJ) cancer: RILOMET-1 study. J Clin Oncol 33(Suppl):abstr 4000Google Scholar
  42. 42.
    Shah MA, Bang YJ, Lordick F et al (2015) METGastric: a phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2−) andMET-positive (MET+) adenocarcinoma of the stomach or gastresophageal junction (GEC). J Clin Oncol 33(Suppl):abstract 4012Google Scholar
  43. 43.
    Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 17:1137–1146CrossRefGoogle Scholar
  44. 44.
    Keir ME, Butte MJ, Freeman GJ (et al) (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26: 677–704CrossRefPubMedGoogle Scholar
  45. 45.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532CrossRefPubMedGoogle Scholar
  47. 47.
    Larkin J, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271CrossRefPubMedGoogle Scholar
  48. 48.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028CrossRefPubMedGoogle Scholar
  52. 52.
    Muro K, Chung HC, Shankaran V et al (2016) Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 17:717–726CrossRefPubMedGoogle Scholar
  53. 53.
    Kang YK, Satoh, Ryu MH et al (2017) Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): a double-blinded, randomized, phase III trial. J Clin Oncol 35(Suppl 4S):abstract 2CrossRefGoogle Scholar
  54. 54.
    Janjigian YY, Bendell JC, Calvo et al (2016) CheckMate-032: Phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC). J Clin Oncol 34(Suppl):abstr 4010Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Clinical Oncology, LKS Faculty of MedicineThe University of Hong Kong, Queen Mary HospitalPokfulamHong Kong

Personalised recommendations