Skip to main content

Animal Model: Xenograft Mouse Models in Esophageal Adenocarcinoma

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1756))

Abstract

Researchers often use murine models of esophageal cancer to evaluate novel therapies prior to clinical protocol treatment. Subcutaneous xenograft models are often used for testing the efficacy of anticancer agents in many cancers including esophageal adenocarcinoma. However, mice subcutaneous esophageal adenocarcinoma models only represent local tumor growth and do not provide any information about a survival benefit for a particular anticancer regimen, which is very crucial for experimental treatment efficacy. In addition, anticancer agents may well inhibit subcutaneous tumor growth without effecting overall animal survival. Herein, we describe a peritoneal dissemination mouse xenograft model for survival outcome analysis with intraperitoneal injection of human esophageal adenocarcinoma cell lines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. https://doi.org/10.3322/caac.21254

    Article  PubMed  Google Scholar 

  2. Liu DS, Read M, Cullinane C, Azar WJ, Fennell CM, Montgomery KG, Haupt S, Haupt Y, Wiman KG, Duong CP, Clemons NJ, Phillips WA (2015) APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of esophageal adenocarcinoma. Gut 64(10):1506–1516. https://doi.org/10.1136/gutjnl-2015-309770

    Article  CAS  PubMed  Google Scholar 

  3. Fujihara S, Kato K, Morishita A, Iwama H, Nishioka T, Chiyo T, Nishiyama N, Miyoshi H, Kobayashi M, Kobara H, Mori H, Okano K, Suzuki Y, Masaki T (2015) Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo. Int J Oncol 46(5):2172–2180. https://doi.org/10.3892/ijo.2015.2903

    Article  CAS  PubMed  Google Scholar 

  4. Dodbiba L, Teichman J, Fleet A, Thai H, Starmans MH, Navab R, Chen Z, Girgis H, Eng L, Espin-Garcia O, Shen X, Bandarchi B, Schwock J, Tsao MS, El-Zimaity H, Der SD, Xu W, Bristow RG, Darling GE, Boutros PC, Ailles LE, Liu G (2015) Appropriateness of using patient-derived xenograft models for pharmacologic evaluation of novel therapies for esophageal/gastro-esophageal junction cancers. PLoS One 10(3):e0121872. https://doi.org/10.1371/journal.pone.0121872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kambhampati S, Rajewski RA, Tanol M, Haque I, Das A, Banerjee S, Jha S, Burns D, Borrego-Diaz E, Van Veldhuizen PJ, Banerjee SK (2013) A second-generation 2-Methoxyestradiol prodrug is effective against Barrett’s adenocarcinoma in a mouse xenograft model. Mol Cancer Ther 12(3):255–263. https://doi.org/10.1158/1535-7163.mct-12-0777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ford SJ, Obeidy P, Lovejoy DB, Bedford M, Nichols L, Chadwick C, Tucker O, Lui GY, Kalinowski DS, Jansson PJ, Iqbal TH, Alderson D, Richardson DR, Tselepis C (2013) Deferasirox (ICL670A) effectively inhibits esophageal cancer growth in vitro and in vivo. Br J Pharmacol 168(6):1316–1328. https://doi.org/10.1111/bph.12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lange T, Nentwich MF, Luth M, Yekebas E, Schumacher U (2011) Trastuzumab has anti-metastatic and anti-angiogenic activity in a spontaneous metastasis xenograft model of esophageal adenocarcinoma. Cancer Lett 308(1):54–61. https://doi.org/10.1016/j.canlet.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Liu DS, Hoefnagel SJ, Fisher OM, Krishnadath KK, Montgomery KG, Busuttil RA, Colebatch AJ, Read M, Duong CP, Phillips WA, Clemons NJ (2016) Novel metastatic models of esophageal adenocarcinoma derived from FLO-1 cells highlight the importance of E-cadherin in cancer metastasis. Oncotarget 7(50):83342–83358. https://doi.org/10.18632/oncotarget.13391

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sehdev V, Peng D, Soutto M, Washington MK, Revetta F, Ecsedy J, Zaika A, Rau TT, Schneider-Stock R, Belkhiri A, El-Rifai W (2012) The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11(3):763–774. https://doi.org/10.1158/1535-7163.mct-11-0623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gros SJ, Dohrmann T, Rawnaq T, Kurschat N, Bouvet M, Wessels J, Hoffmann RM, Izbicki JR, Kaifi JT (2010) Orthotopic fluorescent peritoneal carcinomatosis model of esophageal cancer. Anticancer Res 30(10):3933–3938

    PubMed  Google Scholar 

  11. Sicklick JK, Leonard SY, Babicky ML, Tang CM, Mose ES, French RP, Jaquish DV, Hoh CK, Peterson M, Schwab R, Lowy AM (2014) Generation of orthotopic patient-derived xenografts from gastrointestinal stromal tumor. J Transl Med 12:41. https://doi.org/10.1186/1479-5876-12-41

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hassan MS, Awasthi N, Li J, Schwarz MA, Schwarz RE, Holzen UV (2017) A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma. PLoS One 12(2):e0171824. https://doi.org/10.1371/journal.pone.0171824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O’Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575. https://doi.org/10.1038/nature11005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384. https://doi.org/10.1158/0008-5472.can-13-2971

    Article  CAS  PubMed  Google Scholar 

  15. Niu N, Wang L (2015) In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 16(3):273–285. https://doi.org/10.2217/pgs.14.170

    Article  CAS  PubMed  Google Scholar 

  16. Kresty LA, Weh KM, Zeyzus-Johns B, Perez LN, Howell AB (2015) Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation. Oncotarget 6(32):33438–33455. https://doi.org/10.18632/oncotarget.5586

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin YS, Hu L, Yin MC (2017) Apoptotic effects of rotundic acid on human esophagus and lung cancer cells. Integr Cancer Ther. https://doi.org/10.1177/1534735416635275

  18. Boonstra JJ, Tilanus HW, Dinjens WN (2015) Translational research on esophageal adenocarcinoma: from cell line to clinic. Dis Esophagus 28(1):90–96. https://doi.org/10.1111/dote.12095

    Article  CAS  PubMed  Google Scholar 

  19. Hasina R, Surati M, Kawada I, Arif Q, Carey GB, Kanteti R, Husain AN, Ferguson MK, Vokes EE, Villaflor VM, Salgia R (2013) O-6-methylguanine-deoxyribonucleic acid methyltransferase methylation enhances response to temozolomide treatment in esophageal cancer. J Carcinog 12:20. https://doi.org/10.4103/1477-3163.120632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431. https://doi.org/10.1054/bjoc.2001.1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2(4 Suppl 1):S134–S139

    CAS  PubMed  Google Scholar 

  22. Gros SJ, Kurschat N, Dohrmann T, Reichelt U, Dancau AM, Peldschus K, Adam G, Hoffman RM, Izbicki JR, Kaifi JT (2010) Effective therapeutic targeting of the overexpressed HER-2 receptor in a highly metastatic orthotopic model of esophageal carcinoma. Mol Cancer Ther 9(7):2037–2045. https://doi.org/10.1158/1535-7163.mct-10-0209

    Article  CAS  PubMed  Google Scholar 

  23. Harada K, Ferdous T, Kobayashi H, Ueyama Y (2014) Paclitaxel in combination with cetuximab exerts antitumor effect by suppressing NF-kappaB activity in human oral squamous cell carcinoma cell lines. Int J Oncol 45(6):2439–2445. https://doi.org/10.3892/ijo.2014.2655

    Article  CAS  PubMed  Google Scholar 

  24. Karginova O, Siegel MB, Van Swearingen AE, Deal AM, Adamo B, Sambade MJ, Bazyar S, Nikolaishvili-Feinberg N, Bash R, O’Neal S, Sandison K, Parker JS, Santos C, Darr D, Zamboni W, Lee YZ, Miller CR, Anders CK (2015) Efficacy of Carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA-wild-type triple-negative breast cancer. Mol Cancer Ther 14(4):920–930. https://doi.org/10.1158/1535-7163.mct-14-0474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Awasthi N, Zhang C, Ruan W, Schwarz MA, Schwarz RE (2012) Evaluation of poly-mechanistic antiangiogenic combinations to enhance cytotoxic therapy response in pancreatic cancer. PLoS One 7(6):e38477. https://doi.org/10.1371/journal.pone.0038477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamai M, VandeVen M, Farao M, Gratton E, Ghiglieri A, Castelli MG, Fontana E, D’Argy R, Fiorino A, Pesenti E, Suarato A, Caiolfa VR (2003) Camptothecin poly[n-(2-hydroxypropyl) methacrylamide] copolymers in antitopoisomerase-I tumor therapy: intratumor release and antitumor efficacy. Mol Cancer Ther 2(1):29–40

    Article  CAS  PubMed  Google Scholar 

  27. Awasthi N, Yen PL, Schwarz MA, Schwarz RE (2012) The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem 113(3):784–791. https://doi.org/10.1002/jcb.23405

    Article  CAS  PubMed  Google Scholar 

  28. Awasthi N, Kirane A, Schwarz MA, Toombs JE, Brekken RA, Schwarz RE (2011) Smac mimetic-derived augmentation of chemotherapeutic response in experimental pancreatic cancer. BMC Cancer 11:15. https://doi.org/10.1186/1471-2407-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang C, Awasthi N, Schwarz MA, Schwarz RE (2013) Establishing a peritoneal dissemination xenograft mouse model for survival outcome assessment of experimental gastric cancer. J Surg Res 182(2):227–234. https://doi.org/10.1016/j.jss.2012.10.052

    Article  PubMed  Google Scholar 

  30. Boonstra JJ, van der Velden AW, Beerens EC, van Marion R, Morita-Fujimura Y, Matsui Y, Nishihira T, Tselepis C, Hainaut P, Lowe AW, Beverloo BH, van Dekken H, Tilanus HW, Dinjens WN (2007) Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7. Cancer Res 67(17):7996–8001. https://doi.org/10.1158/0008-5472.can-07-2064

    Article  CAS  PubMed  Google Scholar 

  31. Chemotherapy for cancer of the esophagus: https://www.cancer.org/cancer/esophagus-cancer/treating/chemotherapy.html

  32. Risinger AL, Giles FJ, Mooberry SL (2009) Microtubule dynamics as a target in oncology. Cancer Treat Rev 35(3):255–261. https://doi.org/10.1016/j.ctrv.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  33. Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 82(15):1247–1259

    Article  CAS  PubMed  Google Scholar 

  34. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31(3):443–481. https://doi.org/10.1002/med.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Indiana University internal funding supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs von Holzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hassan, M.S., von Holzen, U. (2018). Animal Model: Xenograft Mouse Models in Esophageal Adenocarcinoma. In: Lam, A. (eds) Esophageal Adenocarcinoma. Methods in Molecular Biology, vol 1756. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7734-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7734-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7733-8

  • Online ISBN: 978-1-4939-7734-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics