Skip to main content

High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome

  • Protocol
  • First Online:
Reporter Gene Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1755))

Abstract

Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2′-deoxycytidine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  Google Scholar 

  2. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  Google Scholar 

  3. Azad N, Zahnow CA, Rudin CM, Baylin SB (2013) The future of epigenetic therapy in solid tumours--lessons from the past. Nat Rev Clin Oncol 10:256–266

    Article  CAS  Google Scholar 

  4. Cui Y et al (2014) A recombinant reporter system for monitoring reactivation of an endogenously DNA hypermethylated gene. Cancer Res 74:3834–3843

    Article  CAS  Google Scholar 

  5. Issa J-PJ, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15:3938–3946

    Article  CAS  Google Scholar 

  6. Lee JT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12:815–826

    Article  CAS  Google Scholar 

  7. Chow J, Heard E (2009) X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 21:359–366

    Article  CAS  Google Scholar 

  8. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    Article  CAS  Google Scholar 

  9. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  CAS  Google Scholar 

  10. Pasque V et al (2014) X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159:1681–1697

    Article  CAS  Google Scholar 

  11. Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153:773–784

    Article  CAS  Google Scholar 

  12. Minkovsky A et al (2014) The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin 7:12

    Article  Google Scholar 

  13. Jozefczuk J, Drews K, Adjaye J (2012) Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp 64

    Google Scholar 

  14. Sado T et al (2000) X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225:294–303

    Article  CAS  Google Scholar 

  15. Minkovsky A et al (2015) A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2’-dC upon inhibition of ribonucleotide reductase. Epigenetics Chromatin 8:42

    Google Scholar 

  16. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  Google Scholar 

  17. Birmingham A et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575

    Article  CAS  Google Scholar 

  18. Konig R et al (2007) A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods 4:847–849

    Article  Google Scholar 

  19. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24:167–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported National Research Service Award AG039179 to A.K. and by funds from the Iris Cantor-UCLA Women’s Health Center Executive Advisory Board to K.P./A.K. K.P. is supported by the NIH (DP2OD001686 and P01 GM099134), CIRM (RN1-00564, RB3-05080, and RB4-06133), and the Jonsson Comprehensive Cancer Center and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. We are grateful to Winnie Hwong for technical assistance, and to Stephen T. Smale for experimental advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Damoiseaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keegan, A., Plath, K., Damoiseaux, R. (2018). High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome. In: Damoiseaux, R., Hasson, S. (eds) Reporter Gene Assays. Methods in Molecular Biology, vol 1755. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7724-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7724-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7722-2

  • Online ISBN: 978-1-4939-7724-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics