Skip to main content

Using YFP as a Reporter of Gene Expression in the Green Alga Chlamydomonas reinhardtii

  • Protocol
  • First Online:
  • 1858 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1755))

Abstract

The unicellular green alga Chlamydomonas reinhardtii is a valuable experimental system in plant biology for studying metal homeostasis. Analyzing transcriptional regulation with promoter-fusion constructs in C. reinhardtii is a powerful method for connecting metal-responsive regulation with cis-regulatory elements, but overcoming expression-level variability between transformants and optimizing experimental conditions can be laborious. Here, we provide detailed protocols for the high-throughput cultivation of C. reinhardtii and assaying Venus fluorescence as a reporter for promoter activity. We also describe procedural considerations for relating metal supply to transcriptional activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  4. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178:7159–7166

    Article  CAS  Google Scholar 

  5. Chiu W, Niwa Y, Zeng W et al (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  Google Scholar 

  6. Pang SZ, DeBoer DL, Wan Y et al (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112:893–900

    Article  CAS  Google Scholar 

  7. Kain SR, Adams M, Kondepudi A et al (1995) Green fluorescent protein as a reporter of gene expression and protein localization. BioTechniques 19:650–655

    CAS  PubMed  Google Scholar 

  8. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  9. Ormö M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  Google Scholar 

  10. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  Google Scholar 

  11. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150

    Article  CAS  Google Scholar 

  12. Rasala BA, Barrera DJ, Ng J et al (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74:545–556

    Article  CAS  Google Scholar 

  13. Barahimipour R, Strenkert D, Neupert J (2015) Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J 84(4):704–717

    Article  CAS  Google Scholar 

  14. Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol 99:3491–3503

    Article  CAS  Google Scholar 

  15. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601

    Article  CAS  Google Scholar 

  17. Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9:925–945

    Article  CAS  Google Scholar 

  18. Hanikenne M, Merchant SS, Hamel P (2009) Transition metal nutrition: a balance between deficiency and toxicity. In: Stern D (ed) The Chlamydomonas sourcebook, vol 2, 2nd edn. Academic Press, San Diego, CA, pp 333–399

    Chapter  Google Scholar 

  19. Blaby-Haas C, Merchant S (2013) Metal homeostasis: sparing and salvaging metals in chloroplasts. In: Culotta V (ed) Metals in cells. Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons Ltd., Chichester, West Sussex, pp 51–64

    Google Scholar 

  20. Blaby-Haas CE, Merchant SS (2013) Iron sparing and recycling in a compartmentalized cell. Curr Opin Microbiol 16(6):677–685

    Article  CAS  Google Scholar 

  21. Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. BBA-Mol Cell Res 1823:1531–1552

    CAS  Google Scholar 

  22. Merchant S, Allen M, Kropat J et al (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. BBA-Mol Cell Res 1763:578–594

    CAS  Google Scholar 

  23. Malasarn D, Kropat J, Hsieh SI et al (2013) Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. J Biol Chem 288:10672–10683

    Article  CAS  Google Scholar 

  24. Urzica EI, Casero D, Yamasaki H et al (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24:3921–3948

    Article  CAS  Google Scholar 

  25. Castruita M, Casero D, Karpowicz SJ et al (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292

    Article  CAS  Google Scholar 

  26. Deng X, Eriksson M (2007) Two iron-responsive promoter elements control expression of FOX1 in Chlamydomonas reinhardtii. Eukaryot Cell 6:2163–2167

    Article  CAS  Google Scholar 

  27. Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–628

    Article  CAS  Google Scholar 

  28. Quinn JM, Merchant S (1998) Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol 297:263–279

    Article  CAS  Google Scholar 

  29. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  Google Scholar 

  30. Kropat J, Hong-Hermesdorf A, Casero D et al (2011) A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J 66:770–780

    Article  CAS  Google Scholar 

  31. Neupert J, Shao N, Lu Y, Bock R (2012) Genetic transformation of the model green alga Chlamydomonas reinhardtii. Methods Mol Biol 847:35–47

    Article  CAS  Google Scholar 

  32. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  Google Scholar 

  33. Harris E (1989) The chlamydomonas sourcebook. A comprehensive guide to biology and laboratory use. Academic Press, San Diego, CA

    Google Scholar 

  34. Blainey P, Krzywinski M, Altman N (2014) Points of significance: replication. Nat Methods 11:879–880

    Article  CAS  Google Scholar 

  35. Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337

    Article  Google Scholar 

  36. Stramski D, Kiefer D (1991) Light-scattering by microorganisms in the open ocean. Prog Oceanogr 28:343–383

    Article  Google Scholar 

  37. de Ruijter N, Verhees J, van Leeuwen W, van der Krol A (2003) Evaluation and comparison of the GUS, LUC and GFP reporter system for gene expression studies in plants. Plant Biol 5:103–115

    Article  Google Scholar 

  38. Fuhrmann M, Hausherr A, Ferbitz L et al (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    Article  CAS  Google Scholar 

  39. Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53:381–388

    Article  CAS  Google Scholar 

  40. Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Gen Genomics 280:153–162

    Article  CAS  Google Scholar 

  41. Baek K et al (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  Google Scholar 

  42. Shin SE et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DE-FD02-04ER15529) and the National Institutes of Health (NIH) R24 GM42143 to SM, and the Office of Biological and Environmental Research of the United States Department of Energy (CEB-H). We are grateful to Prof. Ralph Bock for providing C. reinhardtii UVM11 and pJR39, Dr. Ian Blaby for critical reading of the manuscript, and Britany Reddish for technical support during protocol development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crysten E. Blaby-Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blaby-Haas, C.E., Page, M.D., Merchant, S.S. (2018). Using YFP as a Reporter of Gene Expression in the Green Alga Chlamydomonas reinhardtii . In: Damoiseaux, R., Hasson, S. (eds) Reporter Gene Assays. Methods in Molecular Biology, vol 1755. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7724-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7724-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7722-2

  • Online ISBN: 978-1-4939-7724-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics