Skip to main content

Morphological Survey from Neurons to Circuits of the Mouse Retina

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1753))

Abstract

The mouse retina has a layered structure that is composed of five classes of neurons supported by Müller glial and pigment epithelial cells. Recent studies have made progress in the classification of bipolar and ganglion cells, and also in the wiring of rod-driven signaling, color coding, and directional selectivity. Molecular biological techniques, such as genetic manipulation, transcriptomics, and fluorescence imaging, have contributed a lot to these advancements. The mouse retina has consistently been an important experimental system for both basic and clinical neurosciences.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dowling JE (2012) The retina: an approachable part of the brain, Revised edn. Belknap Harvard, Cambridge MA and London

    Google Scholar 

  2. Fawcett D, Raviola E (1994) Bloom and Fawcett, a textbook of histology, 12th edn. Chapman & Hall, New York and London

    Google Scholar 

  3. Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246. https://doi.org/10.1146/annurev-neuro-071714-034120

    Article  CAS  PubMed  Google Scholar 

  4. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. https://doi.org/10.1038/nrm1739

    Article  PubMed  CAS  Google Scholar 

  5. Franze K, Grosche J, Skatchkov SN, Schinkinger S, Foja C, Schild D, Uckermann O, Travis K, Reichenbach A, Guck J (2007) Muller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 104(20):8287–8292. https://doi.org/10.1073/pnas.0611180104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Labin AM, Ribak EN (2010) Retinal glial cells enhance human vision acuity. Phys Rev Lett 104(15):158102_1–158102_4. https://doi.org/10.1103/PhysRevLett.104.158102

    Article  CAS  Google Scholar 

  7. Reichenbach A, Bringmann A (2013) New functions of muller cells. Glia 61(5):651–678. https://doi.org/10.1002/glia.22477

    Article  PubMed  Google Scholar 

  8. Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11(3):501–517

    Article  CAS  PubMed  Google Scholar 

  9. Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18(21):8936–8946

    CAS  PubMed  Google Scholar 

  10. Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW (2013) Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis 19:1387–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. JComp Neurol 480(4):331–351

    Article  Google Scholar 

  12. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188(2):245–262. https://doi.org/10.1002/cne.901880204

    Article  CAS  PubMed  Google Scholar 

  13. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J Comp Neurol 188(2):263–272. https://doi.org/10.1002/cne.901880205

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190(3):501–508. https://doi.org/10.1002/cne.901900307

    Article  CAS  PubMed  Google Scholar 

  15. Burgoyne T, Meschede IP, Burden JJ, Bailly M, Seabra MC, Futter CE (2015) Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment. Proc Natl Acad Sci U S A 112(52):15922–15927. https://doi.org/10.1073/pnas.1509285113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young RW (1971) An hypothesis to account for a basic distinction between rods and cones. Vis Res 11(1):1–5

    Article  CAS  PubMed  Google Scholar 

  17. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42(2):392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson DH, Fisher SK (1975) Disc shedding in rodlike and conelike photoreceptors of tree squirrels. Science 187(4180):953–955

    Article  CAS  PubMed  Google Scholar 

  19. Euler T, Haverkamp S, Schubert T, Baden T (2014) Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 15(8):507–519

    Article  CAS  PubMed  Google Scholar 

  20. Tsukamoto Y, Omi N (2017) Classification of mouse retinal bipolar cells: type-specific connectivity with special reference to rod-driven AII amacrine pathways. Front Neuroanat 11(92):1–25. https://doi.org/10.3389/fnana.2017.00092

    Google Scholar 

  21. Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469(1):70–82

    Article  PubMed  Google Scholar 

  22. Mataruga A, Kremmer E, Muller F (2007) Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. J Comp Neurol 502(6):1123–1137

    Article  CAS  PubMed  Google Scholar 

  23. Wassle H, Puller C, Muller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29(1):106–117. https://doi.org/10.1523/JNEUROSCI.4442-08.2009

    Article  PubMed  CAS  Google Scholar 

  24. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174

    Article  CAS  PubMed  Google Scholar 

  25. Greene MJ, Kim JS, Seung HS, EyeWirers (2016) Analogous convergence of sustained and transient inputs in parallel on and off pathways for retinal motion computation. Cell Rep 14(8):1892–1900. https://doi.org/10.1016/j.celrep.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  26. Della Santina L, Kuo SP, Yoshimatsu T, Okawa H, Suzuki SC, Hoon M, Tsuboyama K, Rieke F, Wong RO (2016) Glutamatergic Monopolar interneurons provide a novel pathway of excitation in the mouse retina. Curr Biol 26(15):2070–2077. https://doi.org/10.1016/j.cub.2016.06.016

    Article  CAS  PubMed  Google Scholar 

  27. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR (2016) Comprehensive classification of retinal bipolar neurons by single-cell Transcriptomics. Cell 166(5):1308–1323. e1330. https://doi.org/10.1016/j.cell.2016.07.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haverkamp S, Ghosh KK, Hirano AA, Wassle H (2003) Immunocytochemical description of five bipolar cell types of the mouse retina. J Comp Neurol 455(4):463–476

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fox MA, Sanes JR (2007) Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 503(2):280–296. https://doi.org/10.1002/cne.21381

    Article  CAS  PubMed  Google Scholar 

  30. Tsukamoto Y, Omi N (2014) Some OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas. Front Neuroanat 8:105. https://doi.org/10.3389/fnana.2014.00105

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haverkamp S, Specht D, Majumdar S, Zaidi NF, Brandstatter JH, Wasco W, Wassle H, Tom DS (2008) Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. J Comp Neurol 507(1):1087–1101

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T (2003) G protein subunit G gamma 13 is coexpressed with G alpha o, G beta 3, and G beta 4 in retinal ON bipolar cells. J Comp Neurol 455(1):1–10. https://doi.org/10.1002/cne.10396

    Article  CAS  PubMed  Google Scholar 

  33. Tsukamoto Y, Morigiwa K, Ishii M, Takao M, Iwatsuki K, Nakanishi S, Fukuda Y (2007) A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6-deficient mouse retinas. J Neurosci 27(23):6261–6267

    Article  CAS  PubMed  Google Scholar 

  34. Keeley PW, Reese BE (2010) Role of afferents in the differentiation of bipolar cells in the mouse retina. J Neurosci 30(5):1677–1685. https://doi.org/10.1523/JNEUROSCI.5153-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin B, Masland RH (2005) Synaptic contacts between an identified type of ON cone bipolar cell and ganglion cells in the mouse retina. Eur J Neurosci 21(5):1257–1270. https://doi.org/10.1111/j.1460-9568.2005.03967.x

    Article  PubMed  Google Scholar 

  36. Breuninger T, Puller C, Haverkamp S, Euler T (2011) Chromatic bipolar cell pathways in the mouse retina. J Neurosci 31(17):6504–6517. https://doi.org/10.1523/JNEUROSCI.0616-11.2011

    Article  CAS  PubMed  Google Scholar 

  37. Puller C, Haverkamp S (2011) Bipolar cell pathways for color vision in non-primate dichromats. Vis Neurosci 28(1):51–60. https://doi.org/10.1017/S0952523810000271

    Article  PubMed  Google Scholar 

  38. Dumitrescu ON, Pucci FG, Wong KY, Berson DM (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517(2):226–244. https://doi.org/10.1002/cne.22158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calkins DJ, Tsukamoto Y, Sterling P (1998) Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J Neurosci 18(9):3373–3385

    CAS  PubMed  Google Scholar 

  40. Hoshi H, Liu WL, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29(28):8875–8883. https://doi.org/10.1523/JNEUROSCI.0912-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim HL, Jeon JH, Koo TH, Lee UY, Jeong E, Chun MH, Moon JI, Massey SC, Kim IB (2012) Axonal synapses utilize multiple synaptic ribbons in the mammalian retina. PLoS One 7(12):e52295. https://doi.org/10.1371/journal.pone.0052295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lauritzen JS, Anderson JR, Jones BW, Watt CB, Mohammed S, Hoang JV, Marc RE (2013) ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina. J Comp Neurol 521(5):977–1000. https://doi.org/10.1002/cne.23244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Negishi K, Kato S, Teranishi T (1988) Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett 94(3):247–252

    Article  CAS  PubMed  Google Scholar 

  44. Tsukamoto Y, Omi N (2013) Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina. J Comp Neurol 521(15):3541–3555. https://doi.org/10.1002/cne.23370

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong RO (2013) Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 78(1):124–137. https://doi.org/10.1016/j.neuron.2013.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher SK, Boycott BB (1974) Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proc R Soc Lond Ser B 186(1085):317–331

    Article  CAS  Google Scholar 

  47. Kolb H (1974) The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J Comp Neurol 155(1):1–14. https://doi.org/10.1002/cne.901550102

    Article  CAS  PubMed  Google Scholar 

  48. Boycott BB, Peichl L, Wassle H (1978) Morphological types of horizontal cell in the retina of the domestic cat. Proc R Soc Lond Ser B 203(1152):229–245

    Article  CAS  Google Scholar 

  49. Wassle H, Boycott BB, Peichl L (1978) Receptor contacts of horizontal cells in the retina of the domestic cat. Proc R Soc Lond Ser B 203(1152):247–267

    Article  CAS  Google Scholar 

  50. Boycott BB, Hopkins JM, Sperling HG (1987) Cone connections of the horizontal cells of the rhesus monkey's retina. Proc R Soc Lond Ser B 229(1257):345–379

    Article  CAS  Google Scholar 

  51. Thoreson WB, Mangel SC (2012) Lateral interactions in the outer retina. Prog Retin Eye Res 31(5):407–441. https://doi.org/10.1016/j.preteyeres.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G, Huang ZJ, Wong RO (2009) Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nat Neurosci 12(1):35–43. https://doi.org/10.1038/nn.2236

    Article  CAS  PubMed  Google Scholar 

  53. Veruki ML, Hartveit E (2002) Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J Neurosci 22(24):10558–10566

    CAS  PubMed  Google Scholar 

  54. Wu C, Ivanova E, Cui J, Lu Q, Pan ZH (2011) Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 31(41):14654–14659. https://doi.org/10.1523/JNEUROSCI.1861-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin B, Masland RH (2006) Populations of wide-field amacrine cells in the mouse retina. J Comp Neurol 499(5):797–809. https://doi.org/10.1002/cne.21126

    Article  PubMed  Google Scholar 

  56. Boycott BB, Dowling JE, Fisher SK, Kolb H, Laties AM (1975) Interplexiform cells of the mammalian retina and their comparison with catecholamine-containing retinal cells. Proc R Soc Lond B Biol Sci 191(1104):353–368

    Article  CAS  PubMed  Google Scholar 

  57. Dedek K, Breuninger T, de Sevilla Muller LP, Maxeiner S, Schultz K, Janssen-Bienhold U, Willecke K, Euler T, Weiler R (2009) A novel type of interplexiform amacrine cell in the mouse retina. Eur J Neurosci 30(2):217–228. https://doi.org/10.1111/j.1460-9568.2009.06808.x

    Article  PubMed  Google Scholar 

  58. Pourcho RG, Goebel DJ (1985) A combined Golgi and autoradiographic study of (3H)glycine-accumulating amacrine cells in the cat retina. J Comp Neurol 233(4):473–480. https://doi.org/10.1002/cne.902330406

    Article  CAS  PubMed  Google Scholar 

  59. Menger N, Pow DV, Wassle H (1998) Glycinergic amacrine cells of the rat retina. J Comp Neurol 401(1):34–46

    Article  CAS  PubMed  Google Scholar 

  60. MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20(5):971–982

    Article  CAS  PubMed  Google Scholar 

  61. Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424(1):1–23

    Article  CAS  PubMed  Google Scholar 

  62. Witkovsky P, Gabriel R, Krizaj D (2008) Anatomical and neurochemical characterization of dopaminergic interplexiform processes in mouse and rat retinas. J Comp Neurol 510(2):158–174. https://doi.org/10.1002/cne.21784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25. https://doi.org/10.1002/cne.903000103

    Article  CAS  PubMed  Google Scholar 

  64. Rodieck RW (1998) The first steps in seeing. Nature Publishing Group, a division of Macmillan Publishers Limited

    Google Scholar 

  65. Volgyi B, Chheda S, Bloomfield SA (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512(5):664–687. https://doi.org/10.1002/cne.21912

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sun W, Li N, He S (2002) Large-scale morphological survey of mouse retinal ganglion cells. J Comp Neurol 451(2):115–126. https://doi.org/10.1002/cne.10323

    Article  PubMed  Google Scholar 

  67. Kong JH, Fish DR, Rockhill RL, Masland RH (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489(3):293–310. https://doi.org/10.1002/cne.20631

    Article  PubMed  Google Scholar 

  68. Coombs J, van der List D, Wang GY, Chalupa LM (2006) Morphological properties of mouse retinal ganglion cells. Neuroscience 140(1):123–136. https://doi.org/10.1016/j.neuroscience.2006.02.079

    Article  CAS  PubMed  Google Scholar 

  69. Baden T, Berens P, Franke K, Roman Roson M, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586):345–350. https://doi.org/10.1038/nature16468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073. https://doi.org/10.1126/science.1067262

    Article  CAS  PubMed  Google Scholar 

  71. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070. https://doi.org/10.1126/science.1069609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berson DM, Castrucci AM, Provencio I (2010) Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 518(13):2405–2422. https://doi.org/10.1002/cne.22381

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hu C, Hill DD, Wong KY (2013) Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J Neurophysiol 109(7):1876–1889. https://doi.org/10.1152/jn.00579.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60. https://doi.org/10.1016/j.neuron.2010.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11):572–580. https://doi.org/10.1016/j.tins.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Steinberg RH, Wood I, Hogan MJ (1977) Pigment epithelial ensheathment and phagocytosis of extrafoveal cones in human retina. Philos Trans R Soc Lond Ser B Biol Sci 277(958):459–474

    Article  CAS  Google Scholar 

  78. Mata NL, Radu RA, Clemmons RC, Travis GH (2002) Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36(1):69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arshavsky V (2002) Like night and day: rods and cones have different pigment regeneration pathways. Neuron 36(1):1–3

    Article  CAS  PubMed  Google Scholar 

  80. Dreher Z, Robinson SR, Distler C (1992) Muller cells in vascular and avascular retinae: a survey of seven mammals. J Comp Neurol 323(1):59–80. https://doi.org/10.1002/cne.903230106

    Article  CAS  PubMed  Google Scholar 

  81. DeVries SH, Li W, Saszik S (2006) Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse. Neuron 50(5):735–748. https://doi.org/10.1016/j.neuron.2006.04.034

    Article  CAS  PubMed  Google Scholar 

  82. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R (2001) Hemichannel-mediated inhibition in the outer retina. Science 292(5519):1178–1180. https://doi.org/10.1126/science.1060101

    Article  CAS  PubMed  Google Scholar 

  83. Hirasawa H, Kaneko A (2003) pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. J Gen Physiol 122(6):657–671. https://doi.org/10.1085/jgp.200308863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kemmler R, Schultz K, Dedek K, Euler T, Schubert T (2014) Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 34(35):11826–11843. https://doi.org/10.1523/JNEUROSCI.0272-14.2014

    Article  CAS  PubMed  Google Scholar 

  85. Hirasawa H, Yamada M, Kaneko A (2012) Acidification of the synaptic cleft of cone photoreceptor terminal controls the amount of transmitter release, thereby forming the receptive field surround in the vertebrate retina. J Physiol Sci 62(5):359–375. https://doi.org/10.1007/s12576-012-0220-0

    Article  PubMed  Google Scholar 

  86. Sun Z, Risner ML, van Asselt JB, Zhang DQ, Kamermans M, McMahon DG (2012) Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells. J Neurophysiol 107(10):2624–2632. https://doi.org/10.1152/jn.01126.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. DeVries SH, Baylor DA (1995) An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci U S A 92(23):10658–10662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P (2001) Microcircuits for night vision in mouse retina. J Neurosci 21(21):8616–8623

    CAS  PubMed  Google Scholar 

  89. Pang JJ, Gao F, Lem J, Bramblett DE, Paul DL, Wu SM (2010) Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry. Proc Natl Acad Sci U S A 107(1):395–400

    Article  CAS  PubMed  Google Scholar 

  90. Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Volgyi B, Akopian A, Bloomfield SA (2016) Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol 594(22):6679–6699. https://doi.org/10.1113/JP272267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rohlich P, van Veen T, Szel A (1994) Two different visual pigments in one retinal cone cell. Neuron 13(5):1159–1166

    Article  CAS  PubMed  Google Scholar 

  92. Haverkamp S, Wassle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T (2005) The primordial, blue-cone color system of the mouse retina. J Neurosci 25(22):5438–5445. https://doi.org/10.1523/JNEUROSCI.1117-05.2005

    Article  CAS  PubMed  Google Scholar 

  93. Packer OS, Verweij J, Li PH, Schnapf JL, Dacey DM (2010) Blue-yellow opponency in primate S cone photoreceptors. J Neurosci 30(2):568–572. https://doi.org/10.1523/JNEUROSCI.4738-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yin L, Smith RG, Sterling P, Brainard DH (2009) Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. J Neurosci 29(9):2706–2724. https://doi.org/10.1523/JNEUROSCI.5471-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen S, Li W (2012) A color-coding amacrine cell may provide a blue-off signal in a mammalian retina. Nat Neurosci 15(7):954–956. https://doi.org/10.1038/nn.3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mills SL, Tian LM, Hoshi H, Whitaker CM, Massey SC (2014) Three distinct blue-green color pathways in a mammalian retina. J Neurosci 34(5):1760–1768. https://doi.org/10.1523/JNEUROSCI.3901-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marshak DW, Mills SL (2014) Short-wavelength cone-opponent retinal ganglion cells in mammals. Vis Neurosci 31(2):165–175. https://doi.org/10.1017/S095252381300031X

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ekesten B, Gouras P (2005) Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels. Vis Neurosci 22(6):893–903. https://doi.org/10.1017/S0952523805226172

    Article  PubMed  Google Scholar 

  99. Jacobs GH, Williams GA, Cahill H, Nathans J (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315(5819):1723–1725. https://doi.org/10.1126/science.1138838

    Article  CAS  PubMed  Google Scholar 

  100. Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452(7186):478–482. https://doi.org/10.1038/nature06739

    Article  CAS  PubMed  Google Scholar 

  101. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30(3):771–780

    Article  CAS  PubMed  Google Scholar 

  102. Fried SI, Munch TA, Werblin FS (2002) Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420(6914):411–414. https://doi.org/10.1038/nature01179

    Article  CAS  PubMed  Google Scholar 

  103. Masland RH, Mills JW, Hayden SA (1984) Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers. Proc R Soc Lond Ser B 223(1230):79–100

    Article  CAS  Google Scholar 

  104. Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418(6900):845–852. https://doi.org/10.1038/nature00931

    Article  CAS  PubMed  Google Scholar 

  105. Zheng JJ, Lee S, Zhou ZJ (2004) A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44(5):851–864. https://doi.org/10.1016/j.neuron.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  106. Lee S, Zhou ZJ (2006) The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51(6):787–799. https://doi.org/10.1016/j.neuron.2006.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hausselt SE, Euler T, Detwiler PB, Denk W (2007) A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol 5(7):e185. https://doi.org/10.1371/journal.pbio.0050185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Famiglietti EV (1991) Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol 309(1):40–70. https://doi.org/10.1002/cne.903090105

    Article  CAS  PubMed  Google Scholar 

  109. Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Muller J, Szabo A, Juttner J, Cordoba F, Reddy AP, Nemeth J, Nagy ZZ, Munier F, Hierlemann A, Roska B (2016) Congenital Nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 89(1):177–193. https://doi.org/10.1016/j.neuron.2015.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337):183–188. https://doi.org/10.1038/nature09818

    Article  CAS  PubMed  Google Scholar 

  111. Vaney DI (1984) 'Coronate' amacrine cells in the rabbit retina have the 'starburst' dendritic morphology. Proc R Soc Lond Ser B 220(1221):501–508

    Article  CAS  Google Scholar 

  112. Tauchi M, Masland RH (1984) The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc R Soc Lond Ser B 223(1230):101–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Chieko Koike at Ritsumeikan University for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Tsukamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsukamoto, Y. (2018). Morphological Survey from Neurons to Circuits of the Mouse Retina. In: Tanimoto, N. (eds) Mouse Retinal Phenotyping. Methods in Molecular Biology, vol 1753. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7720-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7720-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7719-2

  • Online ISBN: 978-1-4939-7720-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics