Skip to main content

The Reconstruction and Analysis of Gene Regulatory Networks

  • Protocol
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

In post-genomic era, an important task is to explore the function of individual biological molecules (i.e., gene, noncoding RNA, protein, metabolite) and their organization in living cells. For this end, gene regulatory networks (GRNs) are constructed to show relationship between biological molecules, in which the vertices of network denote biological molecules and the edges of network present connection between nodes (Strogatz, Nature 410:268–276, 2001; Bray, Science 301:1864–1865, 2003). Biologists can understand not only the function of biological molecules but also the organization of components of living cells through interpreting the GRNs, since a gene regulatory network is a comprehensively physiological map of living cells and reflects influence of genetic and epigenetic factors (Strogatz, Nature 410:268–276, 2001; Bray, Science 301:1864–1865, 2003). In this paper, we will review the inference methods of GRN reconstruction and analysis approaches of network structure. As a powerful tool for studying complex diseases and biological processes, the applications of the network method in pathway analysis and disease gene identification will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276. https://doi.org/10.1038/35065725

    Article  CAS  PubMed  Google Scholar 

  2. Bray D (2003) Molecular networks: the top-down view. Science 301(5641):1864–1865. https://doi.org/10.1126/science.1089118

    Article  PubMed  Google Scholar 

  3. Noor A, Serpedin E, Nounou M, Nounou H (2013) Reverse engineering sparse gene regulatory networks using cubature Kalman filter and compressed sensing. Adv Bioinforma 205763. https://doi.org/10.1155/2013/205763

  4. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D885–D890. https://doi.org/10.1093/nar/gkn764

    Article  CAS  PubMed  Google Scholar 

  5. Zhu Y, Stephens RM, Meltzer PS, Davis SR SRAdb: query and use public next-generation sequencing data from within R. BMC Bioinformatics 14:19. https://doi.org/10.1186/1471-2105-14-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, Fullgrabe A, Fuentes AM, Jupp S, Koskinen S, Mannion O, Huerta L, Megy K, Snow C, Williams E, Barzine M, Hastings E, Weisser H, Wright J, Jaiswal P, Huber W, Choudhary J, Parkinson HE, Brazma A Expression Atlas update--an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44(D1):D746–D752. https://doi.org/10.1093/nar/gkv1045

  7. Zhao W, Serpedin E, Dougherty ER (2008) Inferring connectivity of genetic regulatory networks using information-theoretic criteria. IEEE/ACM Trans Comput Biol Bioinform 5(2):262–274. https://doi.org/10.1109/TCBB.2007.1067

    Article  CAS  PubMed  Google Scholar 

  8. Noor A, Serpedin E, Nounou M, Nounou H, Mohamed N, Chouchane L (2013) An overview of the statistical methods used for inferring gene regulatory networks and protein-protein interaction networks. Adv Bioinforma:953814. https://doi.org/10.1155/2013/953814

  9. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. https://doi.org/10.1111/j.1365-3040.2009.02040.x

    Article  CAS  PubMed  Google Scholar 

  10. Nounou M, Nounou H, Serpedin E, Datta A, Huang Y (2013) Computational and statistical approaches for modeling of proteomic and genomic networks. Adv Bioinforma:561968. https://doi.org/10.1155/2013/561968

  11. Ma C, Wang X Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis. 160(1):192–Plant Physiol, 203. https://doi.org/10.1104/pp.112.201962

  12. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7. https://doi.org/10.1186/1471-2105-7-S1-S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Zhao XM, He K, Lu L, Cao Y, Liu J, Hao JK, Liu ZP, Chen L Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1):98–104. https://doi.org/10.1093/bioinformatics/btr626

    Article  PubMed  Google Scholar 

  14. Zheng G, Xu Y, Zhang X, Liu ZP, Wang Z, Chen L, Zhu XG CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data. BMC Bioinformatics 17(Suppl 17):535. https://doi.org/10.1186/s12859-016-1324-y

  15. Zhao J, Zhou Y, Zhang X, Chen L Part mutual information for quantifying direct associations in networks. Proc Natl Acad Sci USA 113(18):5130–5135. https://doi.org/10.1073/pnas.1522586113

    Article  CAS  Google Scholar 

  16. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113. https://doi.org/10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  17. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2006) Inference in Bayesian networks. Nat Biotechnol 24(1):51–53. https://doi.org/10.1038/nbt0106-51

    Article  CAS  PubMed  Google Scholar 

  18. Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 42:393–405

    Article  Google Scholar 

  19. Pedro Larranag HK, Bielza C, Santana R (2013) A review on evolutionary algorithms in Bayesian network learning and inference tasks. Inf Sci 233:109–125

    Article  Google Scholar 

  20. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303(5659):799–805. https://doi.org/10.1126/science.1094068

    Article  CAS  PubMed  Google Scholar 

  21. Menendez P, Kourmpetis YA, ter Braak CJ, van Eeuwijk FA Gene regulatory networks from multifactorial perturbations using graphical Lasso: application to the DREAM4 challenge. PLoS One 5(12):e14147. https://doi.org/10.1371/journal.pone.0014147

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kramer N, Schafer J, Boulesteix AL (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics 10:384. https://doi.org/10.1186/1471-2105-10-384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 107(14):6286–6291. https://doi.org/10.1073/pnas.0913357107

    Article  CAS  Google Scholar 

  24. Noor A, Serpedin E, Nounou M, Nounou HN Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity. IEEE/ACM Trans Comput Biol Bioinform 9(4):1203–1211. https://doi.org/10.1109/TCBB.2012.32

    Article  PubMed  Google Scholar 

  25. Wang Z, Yang F, Ho DW, Swift S, Tucker A, Liu X (2008) Stochastic dynamic modeling of short gene expression time-series data. IEEE Trans Nanobioscience 7(1):44–55. https://doi.org/10.1109/TNB.2008.2000149

    Article  CAS  PubMed  Google Scholar 

  26. Koh C, Wu F-X, Selvaraj G, Kusalik AJ (2009) Using a State-Space Model and Location Analysis to Infer Time-Delayed Regulatory Networks. EURASIP Journal on Bioinformatics and Systems Biology 2009(1):484601

    Google Scholar 

  27. Califano A, Butte AJ, Friend S, Ideker T, Schadt E Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44(8):841–847. https://doi.org/10.1038/ng.2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Kellis M, Collins JJ, Stolovitzky G Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804. https://doi.org/10.1038/nmeth.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ravasz E, Barabasi AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 67(2 Pt 2):026112. https://doi.org/10.1103/PhysRevE.67.026112

    Article  CAS  Google Scholar 

  30. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11):3747–3752. https://doi.org/10.1073/pnas.0400087101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11):1746–1758. https://doi.org/10.1093/bioinformatics/bth163

    Article  CAS  PubMed  Google Scholar 

  32. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780. https://doi.org/10.1038/nrm2503

    Article  CAS  PubMed  Google Scholar 

  33. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rivera CG, Vakil R, Bader JS NeMo: Network Module identification in Cytoscape. BMC Bioinformatics 11(Suppl 1):S61. https://doi.org/10.1186/1471-2105-11-S1-S61

  35. Rhrissorrakrai K, Gunsalus KCMINE Module identification in networks. BMC Bioinformatics 12:192. https://doi.org/10.1186/1471-2105-12-192

  36. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia Coli. Nat Genet 31(1):64–68. https://doi.org/10.1038/ng881

    Article  CAS  PubMed  Google Scholar 

  37. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22(9):1152–1153. https://doi.org/10.1093/bioinformatics/btl038

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Stones DS, Wang H, Deng H, Liu X, Wang G NetMODE: network motif detection without Nauty. PLoS One 7(12):e50093. https://doi.org/10.1371/journal.pone.0050093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Pearl SA, Jackson SA Gene networks in plant biology: approaches in reconstruction and analysis. Trends Plant Sci 20(10):664–675. https://doi.org/10.1016/j.tplants.2015.06.013

    Article  CAS  PubMed  Google Scholar 

  40. Lynch M (2007) The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8(10):803–813. https://doi.org/10.1038/nrg2192

    Article  CAS  PubMed  Google Scholar 

  41. Crombach A, Hogeweg P (2008) Evolution of evolvability in gene regulatory networks. PLoS Comput Biol 4(7):e1000112. https://doi.org/10.1371/journal.pcbi.1000112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Movahedi S, Van de Peer Y, Vandepoele K Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol 156(3):1316–1330. https://doi.org/10.1104/pp.111.177865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oliver S (2000) Guilt-by-association goes global. Nature 403(6770):601–603. https://doi.org/10.1038/35001165

    Article  CAS  PubMed  Google Scholar 

  44. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18(12):1257–1261. https://doi.org/10.1038/82360

    Article  CAS  PubMed  Google Scholar 

  46. Macropol K, Can T, Singh AK (2009) RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC bioinformatics 10:283. https://doi.org/10.1186/1471-2105-10-283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Patra JC (2010) Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics 26(9):1219–1224. https://doi.org/10.1093/bioinformatics/btq108

    Article  CAS  PubMed  Google Scholar 

  48. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958. https://doi.org/10.1016/j.ajhg.2008.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang R, Gan M, He P (2011) Constructing a gene semantic similarity network for the inference of disease genes. BMC Syst Biol 5(Suppl 2):S2. https://doi.org/10.1186/1752-0509-5-S2-S2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen X, Liu MX, Yan GY (2012) Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 8(7):1970–1978. https://doi.org/10.1039/c2mb00002d

    Article  CAS  PubMed  Google Scholar 

  51. Shi H, Xu J, Zhang G, Xu L, Li C, Wang L, Zhao Z, Jiang W, Guo Z, Li X (2013) Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 7:101. https://doi.org/10.1186/1752-0509-7-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang T, Liu C-L, Li L-L, Cai M-H, Chen W-Z, Y-F X, O’Reilly PF, Cai L, He L (2016) A new method for identifying causal genes of schizophrenia and anti-tuberculosis drug-induced hepatotoxicity. Sci Rep 6:32571. https://doi.org/10.1038/srep32571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen L, Yang J, Xing Z, Yuan F, Shu Y, Zhang Y, Kong X, Huang T, Li H, Cai Y-D (2017) An integrated method for the identification of novel genes related to oral cancer. PLoS One 12(4):e0175185

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen L, Chu C, Kong X, Huang G, Huang T, Cai YD (2015) A hybrid computational method for the discovery of novel reproduction-related genes. PLoS One 10(3):e0117090. https://doi.org/10.1371/journal.pone.0117090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121. https://doi.org/10.1101/gr.118992.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 3(11):e3802. https://doi.org/10.1371/journal.pone.0003802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang J, Jiang M, Yuan F, Feng KY, Cai YD, Xu X, Chen L (2013) Identification of age-related macular degeneration related genes by applying shortest path algorithm in protein-protein interaction network. Biomed Res Int 2013:523415

    PubMed  PubMed Central  Google Scholar 

  58. Li B-Q, You J, Chen L, Zhang J, Zhang N, Li H-P, Huang T, Kong X-Y, Cai Y-D (2013) Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network. Biomed Res Int 2013:267375. https://doi.org/10.1155/2013/267375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang M, Chen Y, Zhang Y, Chen L, Zhang N, Huang T, Cai Y-D, Kong X (2013) Identification of hepatocellular carcinoma related genes with k-th shortest paths in a protein–protein interaction network. Mol BioSyst 9(11):2720–2728

    Article  CAS  PubMed  Google Scholar 

  60. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  61. Chartrand G, Oellermann OR (1992) Applied and algorithmic graph theory. Mcgraw-Hill College, Pennsylvania NY

    Google Scholar 

  62. Cormen TH, Leiserson CE, R RL, Stein C (2001) Introduction to algorithms, second edn. MIT press and Mcgraw-Hill, Cambridge MA

    Google Scholar 

  63. Hart PENN, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4:100–107

    Article  Google Scholar 

  64. EW D (1959) A note on two problems in connection with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  65. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390. https://doi.org/10.1038/ng1532

    Article  CAS  PubMed  Google Scholar 

  66. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput:418–429

    Google Scholar 

  67. Scutari M (2010) Learning Bayesian networks with the bnlearn R package. J Stat Softw 35(3):1–22

    Article  Google Scholar 

  68. Huang T, Yang J, Cai Y-D (2015) Novel candidate key drivers in the integrative network of genes, MicroRNAs, methylations, and copy number variations in squamous cell lung carcinoma. Biomed Res Int 2015:358125. https://doi.org/10.1155/2015/358125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang T, Liu L, Qian Z, Tu K, Li Y, Xie L (2010) Using GeneReg to construct time delay gene regulatory networks. BMC Res Notes 3(1):142. https://doi.org/10.1186/1756-0500-3-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815. https://doi.org/10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  71. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB--a database for integrating human functional interaction networks. Nucleic Acids Res 37(Database issue):D623–D628. https://doi.org/10.1093/nar/gkn698

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Zheng, G., Huang, T. (2018). The Reconstruction and Analysis of Gene Regulatory Networks. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics