Skip to main content

An Overview of Genome-Wide Association Studies

  • Protocol
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

Genome-wide association study (GWAS) is a powerful study design to identify genetic variants of a trait and, in particular, detect the association between common single-nucleotide polymorphisms (SNPs) and common human diseases such as heart disease, inflammatory bowel disease, type 2 diabetes, and psychiatric disorders. The standard strategy of population-based case-control studies for GWAS is illustrated in this chapter. We provide an overview of the concepts underlying GWAS, as well as provide guidelines for statistical methods performed in GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31(7):776–788. https://doi.org/10.1002/gepi.20240

    Article  PubMed  Google Scholar 

  2. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haldar T, Ghosh S (2011) Power comparison between population-based case-control studies and family-based transmission-disequilibrium tests: an empirical study. Indian J Hum Genet 17(Suppl 1):S27–S31. https://doi.org/10.4103/0971-6866.80355

    Article  PubMed  PubMed Central  Google Scholar 

  4. Satagopan JM (2004) Two-stage designs for gene-disease association studies with sample size constraints. Biometrics 60(3):589–597

    Article  Google Scholar 

  5. Kronenberg F (2008) Genome-wide association studies in aging-related processes such as diabetes mellitus, atherosclerosis and cancer. Exp Gerontol 43(1):39–43. https://doi.org/10.1016/j.exger.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  6. MacArthur J, Bowler E et al (2017) The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res 45(Database issue):D896–D901

    Article  CAS  Google Scholar 

  7. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. https://doi.org/10.1093/nar/gkt1229

    Article  CAS  PubMed  Google Scholar 

  8. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zondervan KT, Cardon LR (2007) Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2(10):2492–2501. https://doi.org/10.1038/nprot.2007.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ (2008) Genome-wide significance for dense SNP and resequencing data. Genet Epidemiol 32(2):179–185. https://doi.org/10.1002/gepi.20292

    Article  PubMed  Google Scholar 

  11. Seng KC, Seng CK (2008) The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet 16(5):554–564. Bush WS, Moore JH (2012) Chapter 11: Genome-wide association studies. PLoS Comput Biol 8 (12):e1002822. doi:10.1371/journal.pcbi.1002822

    Article  CAS  Google Scholar 

  12. Chanock S, NCI-NHGRI Working Group on Replication in Association Studies et al (2007) Replicating genotype-phenotype associations. Nature 447(7145):655–660. https://doi.org/10.1038/447655a

    Article  CAS  PubMed  Google Scholar 

  13. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  14. Spain SL, Barrett JC (2015) Strategies for fine-mapping complex traits. Hum Mol Genet 24(R1):R111–R119. https://doi.org/10.1093/hmg/ddv260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Distefano JK, Taverna DM (2011) Review technological issues and experimental design of gene association studies. Methods Mol Biol 700:3–16

    Article  CAS  Google Scholar 

  16. Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6(2):121–133. https://doi.org/10.1038/nprot.2010.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skol AD, Scott LJ et al (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 5:554–564. https://doi.org/10.1038/ejhg.2008.12

    Article  CAS  Google Scholar 

  18. Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, Jarvik G, Jiang L, Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty CA, McDavid AN, Mirel DB, Paschall JE, Pugh EW, Rasmussen LV, Wilke RA, Zuvich RL, Ritchie MD (2011) Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet Chapter 1:Unit1 19. doi:https://doi.org/10.1002/0471142905.hg0119s68

  19. Auer PL, Lettre G (2015) Rare variant association studies: considerations, challenges and opportunities. Genome Med 7(1):16. https://doi.org/10.1186/s13073-015-0138-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  CAS  Google Scholar 

  21. Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10(2):191–201. https://doi.org/10.2217/14622416.10.2.191

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Chang, M., He, L., Cai, L. (2018). An Overview of Genome-Wide Association Studies. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics