Skip to main content

Progress on Diagnosis of Tuberculous Meningitis

  • Protocol
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

Central nervous system (CNS) disease caused by Mycobacterium tuberculosis (MTB) is highly devastating. Tuberculous meningitis (TBM) is the most common form of CNS tuberculosis (TB). Rapid, sensitive, and affordable diagnostic tests are not available. Ziehl–Neelsen (ZN) stain has a very low sensitivity in cases of TBM, the sensitivity rates is of about 10–20%.The detection rate can be improved by taking large volume CSF samples (>6 ml) and prolonged slide examination (30 min). Culture of MTB from the CSF is slow and insufficiently sensitive. The sensitivity is different, which varies from 36% to 81.8%. The microscopic observation drug susceptibility (MODS) assay was recommended by the World Health Organization in 2011. The sensitivity is 65%, which is more sensitive and faster than CSF smear. Commercial PCR assays were found to be insensitive at detecting MTB in CSF samples. Many research provided the value of ADA on the TBM diagnosis. Interferon-gamma release assays (IGRAs) are not recommended for diagnosis of active TB disease. Imaging is essential in diagnosis and showing complications of CNS TB. Thwaites criteria and the Lancet consensus scoring system (LCSS) were developed to improve the diagnosis of TBM. Clinicians will continue to make judgment based on clinical examination, inflammatory CSF examinations, imaging studies, and scoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalita J, Misra UK, Ranjan P (2007) Predictors of long-term neurological sequelae of tuberculous meningitis: a multivariate analysis. Eur J Neurol 14(1):33–37

    Article  CAS  Google Scholar 

  2. Rock RB et al (2008) Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev 21(2):243–261

    Article  CAS  Google Scholar 

  3. Bhigjee AI et al (2007) Diagnosis of tuberculous meningitis: clinical and laboratory parameters. Int J Infect Dis 11(4):348–354

    Article  CAS  Google Scholar 

  4. Patkar D et al (2012) Central nervous system tuberculosis: pathophysiology and imaging findings. Neuroimaging Clin N Am 22(4):677–705

    Article  Google Scholar 

  5. Thwaites GE, Tran TH (2005) Tuberculous meningitis: many questions, too few answers. Lancet Neurol 4(3):160–170

    Article  Google Scholar 

  6. Bidstrup C et al (2002) Tuberculous meningitis in a country with a low incidence of tuberculosis: still a serious disease and a diagnostic challenge. Scand J Infect Dis 34(11):811–814

    Article  Google Scholar 

  7. Thwaites GE et al (2004) Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351(17):1741–1751

    Article  CAS  Google Scholar 

  8. Sutlas PN et al (2003) Tuberculous meningitis in adults: review of 61 cases. Infection 31(6):387–391

    CAS  PubMed  Google Scholar 

  9. Jha SK et al (2015) Definite (microbiologically confirmed) tuberculous meningitis: predictors and prognostic impact. Infection 43(6):639–645

    Article  CAS  Google Scholar 

  10. Li Y et al (2007) An analysts of the early diagnostic criteria for tuberculosis meningitis. J Zhonghuaneikezazhi 46(3):217–219

    Google Scholar 

  11. Thwaites G et al (2000) Tuberculous meningitis. J Neurol Neurosurg Psychiatry 68(3):289–299

    Article  CAS  Google Scholar 

  12. Thwaites GE, Chau TT, Farrar JJ (2004) Improving the bacteriological diagnosis of tuberculous meningitis. J Clin Microbiol 42(1):378–379

    Article  Google Scholar 

  13. Marx GE, Chan ED (2011) Tuberculous meningitis: diagnosis and treatment overview. Tuberc Res Treat 2011:798764

    PubMed  PubMed Central  Google Scholar 

  14. Erdem H et al (2014) The microbiological diagnosis of tuberculous meningitis: results of Haydarpasa-1 study. Clin Microbiol Infect 20(10):O600–O608

    Article  CAS  Google Scholar 

  15. Chaidir L et al (2012) Comparison of real time IS6110-PCR, microscopy, and culture for diagnosis of tuberculous meningitis in a cohort of adult patients in Indonesia. PLoS One 7(12):e52001

    Article  CAS  Google Scholar 

  16. Caws M et al (2007) Evaluation of the MODS culture technique for the diagnosis of tuberculous meningitis. PLoS One 2(11):e1173

    Article  Google Scholar 

  17. Pai M et al (2003) Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 3(10):633–643

    Article  CAS  Google Scholar 

  18. Vadwai V et al (2011) Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol 49(7):2540–2545

    Article  Google Scholar 

  19. Tortoli E et al (2012) Clinical validation of Xpert MTB/RIF for the diagnosis of extrapulmonary tuberculosis. Eur Respir J 40(2):442–447

    Article  Google Scholar 

  20. Patel VB et al (2013) Diagnostic accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden setting: a prospective study. PLoS Med 10(10):e1001536

    Article  Google Scholar 

  21. Kim SH et al (2010) Rapid diagnosis of tuberculous meningitis by T cell-based assays on peripheral blood and cerebrospinal fluid mononuclear cells. Clin Infect Dis 50(10):1349–1358

    Article  CAS  Google Scholar 

  22. Xu HB et al (2010) Diagnostic value of adenosine deaminase in cerebrospinal fluid for tuberculous meningitis: a meta-analysis. Int J Tuberc Lung Dis 14(11):1382–1387

    PubMed  Google Scholar 

  23. Garcia-Monco JC (1999) Central nervous system tuberculosis. Neurol Clin 17(4):737–759

    Article  CAS  Google Scholar 

  24. Kennedy DH, Fallon RJ (1979) Tuberculous meningitis. JAMA 241(3):264–268

    Article  CAS  Google Scholar 

  25. Steingart KR et al (2006) Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6(9):570–581

    Article  Google Scholar 

  26. Minion J et al (2011) Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting. PLoS One 6(7):e22495

    Article  CAS  Google Scholar 

  27. Tortoli E et al (1999) Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. J Clin Microbiol 37(11):3578–3582

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakanaga K et al (2013) Laboratory procedures for the detection and identification of cutaneous non-tuberculous mycobacterial infections. J Dermatol 40(3):151–159

    Article  CAS  Google Scholar 

  29. Venkataswamy MM et al (2007) Comparative evaluation of BACTEC 460TB system and Lowenstein-Jensen medium for the isolation of M. tuberculosis from cerebrospinal fluid samples of tuberculous meningitis patients. Indian J Med Microbiol 25(3):236–240

    Article  CAS  Google Scholar 

  30. Pfyffer GE, Wittwer F (2012) Incubation time of mycobacterial cultures: how long is long enough to issue a final negative report to the clinician? J Clin Microbiol 50(12):4188–4189

    Article  Google Scholar 

  31. Caviedes L et al (2000) Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru. J Clin Microbiol 38(3):1203–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Coronel J et al (2010) MODS accreditation process for regional reference laboratories in Peru: validation by GenoType(R) MTBDRplus. Int J Tuberc Lung Dis 14(11):1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Torok ME (2015) Tuberculous meningitis: advances in diagnosis and treatment. Br Med Bull 113(1):117–131

    Article  CAS  Google Scholar 

  34. Kaneko K et al (1990) Rapid diagnosis of tuberculous meningitis by polymerase chain reaction (PCR). Neurology 40(10):1617–1618

    Article  CAS  Google Scholar 

  35. Dinnes J et al (2007) A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 11(3):1–196

    Article  CAS  Google Scholar 

  36. Helb D et al (2010) Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48(1):229–237

    Article  CAS  Google Scholar 

  37. Steingart KR et al (2013) Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1:CD009593

    Google Scholar 

  38. Nhu NT et al (2014) Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol 52(1):226–233

    Article  Google Scholar 

  39. Patel VB et al (2014) Comparison of amplicor and GeneXpert MTB/RIF tests for diagnosis of tuberculous meningitis. J Clin Microbiol 52(10):3777–3780

    Article  CAS  Google Scholar 

  40. Moore DA, Shah NS (2011) Alternative methods of diagnosing drug resistance—what can they do for me? J Infect Dis 204(Suppl 4):S1110–S1119

    Article  CAS  Google Scholar 

  41. Khan TA et al (2016) Interferon-gamma improves macrophages function against M. tuberculosis in multidrug-resistant tuberculosis patients. Chemother Res Pract 2016:7295390

    PubMed  PubMed Central  Google Scholar 

  42. Diel R et al (2011) Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J 37(1):88–99

    Article  CAS  Google Scholar 

  43. Metcalfe JZ et al (2011) Interferon-gamma release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: systematic review and meta-analysis. J Infect Dis 204(Suppl 4):S1120–S1129

    Article  Google Scholar 

  44. Patel VB et al (2010) Cerebrospinal T-cell responses aid in the diagnosis of tuberculous meningitis in a human immunodeficiency virus- and tuberculosis-endemic population. Am J Respir Crit Care Med 182(4):569–577

    Article  CAS  Google Scholar 

  45. Vidhate MR et al (2011) Diagnostic and prognostic value of Mycobacterium tuberculosis complex specific interferon gamma release assay in patients with tuberculous meningitis. J Infect 62(5):400–403

    Article  Google Scholar 

  46. Lee YC et al (2001) Adenosine deaminase levels in nontuberculous lymphocytic pleural effusions. Chest 120(2):356–361

    Article  CAS  Google Scholar 

  47. Schutte CM et al (2001) Significance of cerebrospinal fluid adenosine deaminase isoenzymes in tuberculous (TB) meningitis. J Clin Lab Anal 15(5):236–238

    Article  CAS  Google Scholar 

  48. Tuon FF et al (2010) Adenosine deaminase and tuberculous meningitis—a systematic review with meta-analysis. Scand J Infect Dis 42(3):198–207

    Article  CAS  Google Scholar 

  49. Schroth G et al (1987) Advantage of magnetic resonance imaging in the diagnosis of cerebral infections. Neuroradiology 29(2):120–126

    Article  CAS  Google Scholar 

  50. Przybojewski S, Andronikou S, Wilmshurst J (2006) Objective CT criteria to determine the presence of abnormal basal enhancement in children with suspected tuberculous meningitis. Pediatr Radiol 36(7):687–696

    Article  Google Scholar 

  51. Botha H et al (2012) Reliability and diagnostic performance of CT imaging criteria in the diagnosis of tuberculous meningitis. PLoS One 7(6):e38982

    Article  CAS  Google Scholar 

  52. Hosoglu S et al (2002) Predictors of outcome in patients with tuberculous meningitis. Int J Tuberc Lung Dis 6(1):64–70

    CAS  PubMed  Google Scholar 

  53. Chatterjee S (2011) Brain tuberculomas, tubercular meningitis, and post-tubercular hydrocephalus in children. J Pediatr Neurosci 6(Suppl 1):S96–S100

    Article  Google Scholar 

  54. Dastur DK, Manghani DK, Udani PM (1995) Pathology and pathogenetic mechanisms in neurotuberculosis. Radiol Clin N Am 33(4):733–752

    CAS  PubMed  Google Scholar 

  55. Misra UK, Kalita J, Maurya PK (2011) Stroke in tuberculous meningitis. J Neurol Sci 303(1–2):22–30

    Article  Google Scholar 

  56. Nair PP et al (2009) MRI pattern of infarcts in basal ganglia region in patients with tuberculous meningitis. Neuroradiology 51(4):221–225

    Article  CAS  Google Scholar 

  57. Tai MS et al (2016) Cerebral infarction pattern in tuberculous meningitis. Sci Rep 6:38802

    Article  CAS  Google Scholar 

  58. Chan KH et al (2005) Cerebral infarcts complicating tuberculous meningitis. Cerebrovasc Dis 19(6):391–395

    Article  CAS  Google Scholar 

  59. Dastur HM, Desai AD (1965) A comparative study of brain tuberculomas and gliomas based upon 107 case records of each. Brain 88(2):375–396

    Article  CAS  Google Scholar 

  60. Kumar SN et al (2013) Granuloma with langhans giant cells: an overview. J Oral Maxillofac Pathol 17(3):420–423

    Article  Google Scholar 

  61. Gupta RK et al (1990) Role of magnetic resonance (MR) in the diagnosis and management of intracranial tuberculomas. Clin Radiol 41(2):120–127

    Article  CAS  Google Scholar 

  62. Trivedi R, Saksena S, Gupta RK (2009) Magnetic resonance imaging in central nervous system tuberculosis. Indian J Radiol Imaging 19(4):256–265

    Article  Google Scholar 

  63. Gupta RK, Kathuria MK, Pradhan S (1999) Magnetization transfer MR imaging in CNS tuberculosis. AJNR Am J Neuroradiol 20(5):867–875

    CAS  PubMed  Google Scholar 

  64. Kurien R, Sudarsanam TD, Thomas K (2013) Tuberculous meningitis: a comparison of scoring systems for diagnosis. Oman Med J 28(3):163–166

    Article  Google Scholar 

  65. Thwaites GE et al (2002) Diagnosis of adult tuberculous meningitis by use of clinical and laboratory features. Lancet 360(9342):1287–1292

    Article  CAS  Google Scholar 

  66. Sunbul M et al (2005) Thwaites' diagnostic scoring and the prediction of tuberculous meningitis. Med Princ Pract 14(3):151–154

    Article  Google Scholar 

  67. Zhang YL et al (2014) Validation of thwaites’ diagnostic scoring system for the differential diagnosis of tuberculous meningitis and bacterial meningitis. Jpn J Infect Dis 67(6):428–431

    Article  Google Scholar 

  68. Marais S et al (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10(11):803–812

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Wang, Yy., Xie, Bd. (2018). Progress on Diagnosis of Tuberculous Meningitis. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics