Skip to main content

Computational Prediction of Protein O-GlcNAc Modification

  • Protocol
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

Protein O-GlcNAcylation on serine and threonine residues is a significant posttranslational modification. Experimental techniques can uncover only a small portion of O-GlcNAcylation sites. Several computational algorithms have been proposed as necessary auxiliary tools to identify potential O-GlcNAcylation sites. This chapter discusses the metrics and procedures used to assess prediction tools and surveys six computational tools for the prediction of protein O-GlcNAcylation sites. Analyses of these tools using an independent test dataset indicated the advantages and disadvantages of the six existing prediction methods. We also discuss the challenges that may be faced while developing novel predictors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    CAS  PubMed  Google Scholar 

  2. Comer FI, Hart GW (1999) O-GlcNAc and the control of gene expression. Biochim Biophys Acta 1473:161–171

    Article  CAS  Google Scholar 

  3. McClain DA, Crook ED (1996) Hexosamines and insulin resistance. Diabetes 45:1003–1009

    Article  CAS  Google Scholar 

  4. Liu F et al (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:10804–10809

    Article  CAS  Google Scholar 

  5. Wang Z et al (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160

    Article  CAS  Google Scholar 

  6. Wang J, Torii M, Liu H et al (2011) dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics 12(1):91

    Article  CAS  Google Scholar 

  7. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002:310–322

    Google Scholar 

  8. Jia CZ, Liu T, Wang ZP (2013) O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites. Mol Biosyst 9(11):2909–2913

    Article  CAS  Google Scholar 

  9. Wu HY et al (2014) Characterization and identification of protein O-GlcNAcylation sites with substrate specificity. BMC Bioinformatics 15(16):S1

    Article  Google Scholar 

  10. Zhao XW et al (2015) PGlcS: prediction of protein O-GlcNAcylation sites with multiple features and analysis. J Theor Biol 380(3):524

    Article  CAS  Google Scholar 

  11. Kao HJ et al (2015) A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. BMC Bioinformatics 16(18):S10

    Article  Google Scholar 

  12. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32(Database issue):115–119

    Article  Google Scholar 

  13. Lee TY, Huang HD, Hung JH et al (2006) dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 34(Database issue):622–627

    Article  Google Scholar 

  14. Hansen JE, Lund O, Nielsen JO et al (1999) O-GLYCBASE: a revised database of O-glycosylated proteins. Nucleic Acids Res 27(1):370–372

    Article  Google Scholar 

  15. Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261

    Article  CAS  Google Scholar 

  16. Shi SP et al (2015) Progress and challenges in predicting protein methylation sites. Mol Biosyst 11:2610–2619

    Article  CAS  Google Scholar 

  17. Chen SA, Lee TY, YY O (2010) Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins. BMC Bioinformatics 11(1):1–13

    Article  CAS  Google Scholar 

  18. Caragea C, Sinapov J, Silvescu A et al (2007) Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 8(1):438

    Article  Google Scholar 

  19. Trinidad JC et al (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11(8):215–229

    Article  Google Scholar 

  20. Jochmann R et al (2013) O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 23(10):1114–1130

    Article  CAS  Google Scholar 

  21. Hahne H, Gholami A, Kuster B (2012) Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Mol Cell Proteom 11(10):843

    Article  CAS  Google Scholar 

  22. Hahne H et al (2013) Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res 12(2):927–936

    Article  CAS  Google Scholar 

  23. Allison DF et al (2012) Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-κB acetylation and transcription. Proc Natl Acad Sci U S A 109(42):16888–16893

    Article  CAS  Google Scholar 

  24. Gawlowski T et al (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287(35):30024–30034

    Article  CAS  Google Scholar 

  25. Wang S et al (2012) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS One 7(5):e37427

    Article  CAS  Google Scholar 

  26. Floyd ZE, Stephens JM (2012) Controlling a master switch of adipocyte development and insulin sensitivity: covalent modifications of PPARγ. Biochim Biophys Acta 1822(7):1090–1095

    Article  CAS  Google Scholar 

  27. Ji S et al (2012) O-GlcNAc modification of PPARgamma reduces its transcriptional activity. Biochem Biophys Res Commun 417(4):1158–1163

    Article  CAS  Google Scholar 

  28. Alfaro JF et al (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci U S A 109(19):7280–7285

    Article  CAS  Google Scholar 

  29. Pathak S et al (2012) O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J 31(6):1394–1404

    Article  CAS  Google Scholar 

  30. Overath T et al (2012) Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteom 11(8):467

    Article  Google Scholar 

  31. Shao J et al (2009) Computational identification of protein methylation sites through bi-profile bayes feature extraction. PLoS One 4(3):e4920

    Article  Google Scholar 

  32. Lee TY, Chen SA, Hung HY, YY O (2011) Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites. PLoS One 6(3):e17331

    Article  CAS  Google Scholar 

  33. Hsu BK et al (2012) Incorporating evolutionary information and functional domains for identifying RNA splicing factors in humans. PLoS One 6(11):e27567

    Article  Google Scholar 

  34. Xie D et al (2005) LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Res 33(Web Server issue):105–110

    Article  Google Scholar 

  35. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195

    Article  CAS  Google Scholar 

  36. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  37. Andersen MT, Packer NH (2014) Advances in LC–MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta 1844:1437–1452

    Article  Google Scholar 

  38. Mcguffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404

    Article  CAS  Google Scholar 

  39. Ward JJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635

    Article  CAS  Google Scholar 

  40. Ahmad S, Gromiha MM, Sarai A (2003) RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinformatics 19(14):1849–1851

    Article  CAS  Google Scholar 

  41. Ahmad S, Gromiha MM, Sarai A (2003) Real value prediction of solvent accessibility from amino acid sequence. Proteins 50(4):629–635

    Article  CAS  Google Scholar 

  42. Kenney JF, Mosak JL (1951), Mathematics of Statistics, Van Nostrand, Princeton, NJ, 2nd edn, pp. 36–41

    Google Scholar 

  43. Kawashima S et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database issue):202–205

    Google Scholar 

  44. Tung CW, Ho SY (2008) Computational identification of ubiquitylation sites from protein sequences. BMC Bioinformatics 9:310

    Article  Google Scholar 

  45. Cao DS, QS X, Liang YZ (2013) Propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29:960–962

    Article  CAS  Google Scholar 

  46. Du P, Gu S, Jiao Y (2014) PseAAC-General: fast building various modes of general form of Chou’s pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci 15(3):3495–3506

    Article  CAS  Google Scholar 

  47. Qiu WR, Xiao X, Lin WZ (2014) iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. Biomed Res Int 2014(12):947416

    PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Liu B, Dong Q, Jin VX (2011) An improved profile-level domain linker propensity index for protein domain boundary prediction. Protein Pept Lett 18(1):7–16

    Article  Google Scholar 

  49. Shao J et al (2012) Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Mol Biosyst 8(11):2964–2973

    Article  CAS  Google Scholar 

  50. Wee LJ et al (2010) SVM-based prediction of linear B-cell epitopes using Bayes feature extraction. BMC Genomics 11(4):S21

    Article  Google Scholar 

  51. Song L et al (2014) nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinformatics 15:298

    Article  Google Scholar 

  52. Li DP, Ju Y, Zou Q (2016) Protein folds prediction with hierarchical structured SVM. Curr Proteomics 13:79–85

    Article  CAS  Google Scholar 

  53. Schwartz D (2012) Prediction of lysine posttranslational modifications using bioinformatic tools. Essays Biochem 52:165–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (3132016306, 3132017048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cangzhi Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Jia, C., Zuo, Y. (2018). Computational Prediction of Protein O-GlcNAc Modification. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics