Skip to main content

Identifying Interactions Between Long Noncoding RNAs and Diseases Based on Computational Methods

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

With the development and improvement of next-generation sequencing technology, a great number of noncoding RNAs have been discovered. Long noncoding RNAs (lncRNAs) are the biggest kind of noncoding RNAs with more than 200 nt nucleotides in length. There are increasing evidences showing that lncRNAs play key roles in many biological processes. Therefore, the mutation and dysregulation of lncRNAs have close association with a number of complex human diseases. Identifying the most likely interaction between lncRNAs and diseases becomes a fundamental challenge in human health. A common view is that lncRNAs with similar function tend to be related to phenotypic similar diseases. In this chapter, we firstly introduce the concept of lncRNA, their biological features, and available data resources. Further, the recent computational approaches are explored to identify interactions between long noncoding RNAs and diseases, including their advantages and disadvantages. The key issues and potential future works of predicting interactions between long noncoding RNAs and diseases are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Collins FS, Vega FMDL, Donnelly P, Egholm M (2010) Consortium, T.G.P.: a map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  PubMed  Google Scholar 

  2. Chen Q, Luo H, Zhang C, Chen P (2015) Bioinformatics in protein kinases regulatory network and drug discovery. Math Biosci 262:147–156

    Article  CAS  PubMed  Google Scholar 

  3. Green ED, Guyer MS (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470(7333):204

    Article  CAS  PubMed  Google Scholar 

  4. Yan C, Wang J, Lan W, Wu F, Pan Y (2017) SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures. Complexity 2017 (2017), Article ID 2713280

    Google Scholar 

  5. Chen Q, Chen P, Zhang C (2016) Effective classification of conserved RNA secondary structures using interval based similarity. IEEE Intell Syst 31(3):78–85

    Article  Google Scholar 

  6. Chen Q, Lan W, Wang J (2013) Mining Featured Patterns of MiRNA Interaction based on Sequence and Structure Similarity. IEEE Trans Comput Biol Bioinformatics 10(2):415–422

    Article  Google Scholar 

  7. Guttman M, Amit I, Garber M, French C, Lin M, Feldser D, Huarte M, Zuk O, Carey B, Cassady J, Cabili M, Jaenisch R, Mikkelsen T, Jacks T, Hacohen N, Bernstein B, Kellis M, Regev A, Rinn J, Lander E (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Louro R, Smirnova AS, Verjovski-Almeida S (2009) Long intronic noncoding RNA transcription: expression noise or expression choice. Genomics 93(4):291–298

    Article  CAS  PubMed  Google Scholar 

  9. Lan W, Chen Q, Li T, Yuan C, Mann S, Chen B (2014) Identification of important positions within miRNAs by integrating sequential and structural features. Curr Protein Pept Sci 15(6):591–597

    Article  CAS  PubMed  Google Scholar 

  10. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mercer T, Dinger M, Mattick J (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  PubMed  Google Scholar 

  12. Chen Q, Li G, Chen YP (2011) Interval-based distance function for identifying RNA structure candidates. J Theor Biol 269(1):280–286

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J (2013) LncRNA-dependent mechanisms of androgen receptor-regulated gene activation programs. Nature 500(7464):598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, Liu B (2014) Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5(8):2318–2329

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laurent GS, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31(5):239

    Article  Google Scholar 

  16. Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC (2014) The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43(Database issue):D1099

    PubMed  PubMed Central  Google Scholar 

  17. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186(5):637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ponting C, Oliver P, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  20. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81(1):145

    Article  CAS  PubMed  Google Scholar 

  21. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batista P, Chang H (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zörnig M, MacLeod A, Spector D, Diederichs S (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189

    Article  CAS  PubMed  Google Scholar 

  24. Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C, Sivasubbu S, Scaria V (2012) Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discovery 7(6):503–513

    Article  CAS  Google Scholar 

  25. Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839(11):1097

    Article  CAS  PubMed  Google Scholar 

  26. Xing C, Yan CC, Xu Z, You ZH (2017) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18:558

    Google Scholar 

  27. Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, Feng G, Kibbe WA (2012) Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res 40(Database issue):940–946

    Article  Google Scholar 

  28. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2014) OMIM.org: online mendelian inheritance in man (OMIM), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(Database issue):D789

    PubMed  PubMed Central  Google Scholar 

  29. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36(5):431–432

    Article  CAS  PubMed  Google Scholar 

  30. Piñero J, Queraltrosinach N, Bravo À, Deupons J, Bauermehren A, Baron M, Sanz F, Furlong LI (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015(3):bav028

    Article  PubMed  PubMed Central  Google Scholar 

  31. Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41(Database issue):246–251

    Article  Google Scholar 

  32. Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44(Database issue):D203–D208

    Article  CAS  PubMed  Google Scholar 

  33. Chakraborty S, Deb A, Maji RK, Saha S, Ghosh Z (2013) LncRBase: an enriched resource for lncRNA information. PLoS One 9(9):e108010

    Article  Google Scholar 

  34. Ma L, Li A, Zou D, Xu X, Xia L, Yu J, Bajic VB, Zhang Z (2015) LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res 43(Database issue):187–192

    Article  Google Scholar 

  35. Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43(Database issue):168–173

    Article  Google Scholar 

  36. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(Database issue):D983

    CAS  PubMed  Google Scholar 

  37. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44(D1):D980

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Chen L, Chen B, Li X, Kang J, Fan K, Hu Y, Xu J, Yi L, Yang J (2013) Mammalian ncRNA-disease repository: a global view of ncRNA-mediated disease network. Cell Death Dis 4(8):e765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lan W, Wang J, Li M, Peng W, Wu F (2015) Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua Sci Technol 20(5):500–512

    Article  CAS  Google Scholar 

  40. Guo X, Gao L, Wang Y, Chiu DK, Wang T, Deng Y (2015) Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics 15(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen LL, Carmichael GG (2010) Decoding the function of nuclear long noncoding RNAs. Curr Opin Cell Biol 22(3):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng W, Lan W, Zhong J, Wang J, Pan Y (2017) A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. Methods 124:69. https://doi.org/10.1016/j.ymeth.2017.05.024

    Article  CAS  PubMed  Google Scholar 

  43. Yan C, Wang J, Ni P, Lan W, Wu F, Pan Y (2017) DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE Transa Comput Biol Bioinformatics 99:1–1

    Google Scholar 

  44. Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, Hao D, Liu S, Zhou M (2014) Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol Biosyst 10(8):2074–2081

    Article  CAS  PubMed  Google Scholar 

  45. Cheng L, Shi H, Wang Z, Hu Y, Yang H, Zhou C, Sun J, Zhou M (2016) IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity. Oncotarget 7(30):47864–47874

    PubMed  PubMed Central  Google Scholar 

  46. Chen X, You ZH, Yan GY, Gong DW (2016) IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7(36):57919

    PubMed  PubMed Central  Google Scholar 

  47. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H, Sun J (2015) Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol Biosyst 11(3):760–769

    Article  CAS  PubMed  Google Scholar 

  48. Alaimo S, Giugno R, Pulvirenti A (2014) ncPred: ncRNA-disease association prediction through tripartite network-based inference. Front Bioeng Biotechnol 2:71

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Zhang R, Qiu F, Li K, Zhou Y, Shang D, Xu Y (2015) Construction of a lncRNA-PCG bipartite network and identification of cancer-related lncRNAs: a case study in prostate cancer. Mol Biosyst 11(2):384

    Article  CAS  PubMed  Google Scholar 

  50. Yao Q, Wu L, Li J, Yang LG, Sun Y, Li Z, He S, Feng F, Li H, Li Y (2017) Global prioritizing disease candidate lncRNAs via a multi-level composite network. Sci Rep 7:39516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ganegoda GU, Li M, Wang W, Feng Q (2015) Heterogeneous network model to infer human disease-long intergenic non coding RNA associations. IEEE Trans Nanobioscience 14(2):175–183

    Article  PubMed  Google Scholar 

  52. Lan W, Wang J, Min L, Jin L, Wu FX, Pan Y (2016) Predicting microRNA-disease associations based on improved microRNA and disease similarities. IEEE Transa Comput Biol Bioinformatics 99:1–1

    Google Scholar 

  53. Lan W, Wang J, Li M, Liu J, Li Y, Wu FX, Pan Y (2016) Predicting drug-target interaction using positive-unlabeled learning. Neurocomputing 206(C):50–57

    Article  Google Scholar 

  54. Liu J, Li M, Lan W, Wu FX, Pan Y, Wang J (2016) Classification of Alzheimer’s disease using whole brain hierarchical network. IEEE Transa Comput Biol Bioinformatics 99:1–1

    Google Scholar 

  55. Peng W, Lan W, Zeng Y, Wang J, Yi P (2016) A Framework for integrating multiple biological networks to predict microRNA-disease associations. IEEE Trans Nanobiosci 99:1–1

    Google Scholar 

  56. Zhao T, Xu J, Liu L, Bai J, Xu C, Xiao Y, Li X, Zhang L (2015) Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features. Mol Biosyst 11(1):126

    Article  CAS  PubMed  Google Scholar 

  57. Lan W, Li M, Zhao K, Jin L, Wu FX, Yi P, Wang J (2017) LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 33:458

    PubMed  Google Scholar 

  58. Chen X, Yan GY (2013) Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 29(20):2617

    Article  CAS  PubMed  Google Scholar 

  59. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q (2015) Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci Rep 5:11338

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huang YA, Chen X, You ZH, Huang DS, Chan KC (2016) ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18):25902–25914

    PubMed  PubMed Central  Google Scholar 

  61. Chen X, Huang YA, Wang XS, You ZH, Chan KCC (2016) FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29):45948–45958

    PubMed  PubMed Central  Google Scholar 

  62. Biswas AK, Kang M, Kim DC, Ding CHQ, Zhang B, Wu X, Gao JX (2015) Inferring disease associations of the long non-coding RNAs through non-negative matrix factorization. Network Modeling Analysis in Health Informatics and. Bioinformatics 4(1):1–17

    Google Scholar 

  63. Li M, Zheng R, Zhang H, Wang J, Pan Y (2014) Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods 67(3):325–333

    Article  CAS  PubMed  Google Scholar 

  64. Li M, Zheng R, Li Q, Wang J, Wu FX, Zhang Z (2016) Prioritizing disease genes by using search engine algorithm. Curr Bioinformatics 11:195

    Article  CAS  Google Scholar 

  65. Liu MX, Chen X, Chen G, Cui QH, Yan GY (2014) A computational framework to infer human disease-associated long noncoding RNAs. PLoS One 9(1):e84408

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen X (2015) Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 5:13186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ying L, Ye H, Han S, Liang Y (2017) Identification and functional inference for tumor-associated long non-coding RNA. IEEE Transa Comput Biol Bioinformatics 99:1–1

    Google Scholar 

  68. Cogill SB, Wang L (2014) Co-expression network analysis of human lncRNAs and cancer genes. Cancer Informatics 13(Suppl 5):49–59

    PubMed  PubMed Central  Google Scholar 

  69. Zhou M, Zhong L, Xu W, Sun Y, Zhang Z, Zhao H, Yang L, Sun J (2016) Discovery of potential prognostic long non-coding RNA biomarkers for predicting the risk of tumor recurrence of breast cancer patients. Sci Rep 6:31038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng W, Guo Q, Yue G, Hui Z, Yan Z, Yue L, Zhang J, Ming Y, Guo M, Ning S (2017) Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data. Oncotarget 8(3):4642–4655

    Article  Google Scholar 

  71. Wery M, Descrimes M, Vogt N, Dallongeville AS, Gautheret D, Morillon A (2016) Nonsense-mediated decay restricts LncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol Cell 61(3):379–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chodroff RA, Goodstadt L, Sirey TM, Oliver PL, Davies KE, Green ED, Molnár Z, Ponting CP (2010) Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol 11(7):R72

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mitra SA, Mitra AP, Triche TJ (2012) A central role for long non-coding RNA in cancer. Front Genet 3:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sanbonmatsu KY (2015) Towards structural classification of long non-coding RNAs. Biochim Biophys Acta 1859(1):41–45

    Article  PubMed  Google Scholar 

  75. Liu J, Wang J, Hu B, Wu FX, Pan Y (2017) Alzheimer’s disease classification based on individual hierarchical networks constructed with 3D texture features. IEEE Trans Nanobioscience 16:428. https://doi.org/10.1109/TNB.2017.2707139

    Article  PubMed  Google Scholar 

  76. Da SL, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13(1):97–114

    Google Scholar 

  77. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under Grant No. 61702122, 61751314 and 61363025; a key project of Natural Science Foundation of Guangxi 2017GXNSFDA198033 and a key research and development plan of Guangxi AB17195055; the Director Open Fund of Qinzhou City Key Laboratory of Advanced Technology of Internet of Things IOT2017A04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Lan, W., Huang, L., Lai, D., Chen, Q. (2018). Identifying Interactions Between Long Noncoding RNAs and Diseases Based on Computational Methods. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics