Skip to main content

Revisit of Machine Learning Supported Biological and Biomedical Studies

  • Protocol
Book cover Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

Abstract

Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma S, Huang J (2008) Penalized feature selection and classification in bioinformatics. Brief Bioinform 9(5):392–403. https://doi.org/10.1093/bib/bbn027.bbn027[pii]

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodriguez A, Laio A (2014) Machine learning. Clustering by fast search and find of density peaks. Science 344(6191):1492–1496. https://doi.org/10.1126/science.1242072

    Article  CAS  PubMed  Google Scholar 

  3. Zeng T, Zhang W, Yu X, Liu X, Li M, Liu R, Chen L (2014) Edge biomarkers for classification and prediction of phenotypes. Sci China Life Sci 57(11):1103–1114. https://doi.org/10.1007/s11427-014-4757-4

    Article  CAS  PubMed  Google Scholar 

  4. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521(7553):452–459. https://doi.org/10.1038/nature14541

    Article  CAS  PubMed  Google Scholar 

  5. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260. https://doi.org/10.1126/science.aaa8415

    Article  CAS  PubMed  Google Scholar 

  6. Lee EY, Fulan BM, Wong GC, Ferguson AL (2016) Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci U S A 113(48):13588–13593. https://doi.org/10.1073/pnas.1609893113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, Sabatini DM (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A 106(6):1826–1831. https://doi.org/10.1073/pnas.0808843106

    Article  PubMed  PubMed Central  Google Scholar 

  8. King RD, Muggleton S, Lewis RA, Sternberg MJ (1992) Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc Natl Acad Sci U S A 89(23):11322–11326

    Article  CAS  Google Scholar 

  9. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8(1):68–74. https://doi.org/10.1038/nm0102-68

    Article  CAS  PubMed  Google Scholar 

  10. Szarvas G, Farkas R, Busa-Fekete R (2007) State-of-the-art anonymization of medical records using an iterative machine learning framework. J Am Med Inform Assoc 14(5):574–580. https://doi.org/10.1197/j.jamia.M2441

    Article  PubMed  PubMed Central  Google Scholar 

  11. Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219. https://doi.org/10.1056/NEJMp1606181

    Article  PubMed  PubMed Central  Google Scholar 

  12. Passos IC, Mwangi B, Kapczinski F (2016) Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry 3(1):13–15. https://doi.org/10.1016/S2215-0366(15)00549-0

    Article  PubMed  Google Scholar 

  13. Zeng T, Zhang W, Yu X, Liu X, Li M, Chen L (2016) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief Bioinform 17(4):576–592. https://doi.org/10.1093/bib/bbv078

    Article  PubMed  Google Scholar 

  14. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332. https://doi.org/10.1038/nrg3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma C, Zhang HH, Wang X (2014) Machine learning for Big Data analytics in plants. Trends Plant Sci 19(12):798–808. https://doi.org/10.1016/j.tplants.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Wu FX, Ngom A (2016) A review on machine learning principles for multi-view biological data integration. Brief Bioinform. https://doi.org/10.1093/bib/bbw113

  17. Fabris F, Magalhaes JP, Freitas AA (2017) A review of supervised machine learning applied to ageing research. Biogerontology 18(2):171–188. https://doi.org/10.1007/s10522-017-9683-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walsh I, Pollastri G, Tosatto SC (2016) Correct machine learning on protein sequences: a peer-reviewing perspective. Brief Bioinform 17(5):831–840. https://doi.org/10.1093/bib/bbv082

    Article  CAS  PubMed  Google Scholar 

  19. Fu LM (2014) Machine learning and tubercular drug target recognition. Curr Pharm Des 20(27):4307–4318

    Article  CAS  Google Scholar 

  20. Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124. https://doi.org/10.1016/j.tplants.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  21. Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR (2014) A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics 15:134. https://doi.org/10.1186/1471-2105-15-134

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walia RR, Caragea C, Lewis BA, Towfic F, Terribilini M, El-Manzalawy Y, Dobbs D, Honavar V (2012) Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. BMC Bioinformatics 13:89. https://doi.org/10.1186/1471-2105-13-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Int Res 4(1):77–90

    Google Scholar 

  24. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Netw ISDN Syst 30(1):107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  25. Curtin RR, Cline JR, Slagle NP, March WB, Ram P, Mehta NA, Gray AG (2013) MLPACK: a scalable C++ machine learning library. J Mach Learn Res 14(1):801–805

    Google Scholar 

  26. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, 1994. Morgan Kaufmann Publishers Inc., pp 487–499. doi:citeulike-article-id:217131

    Google Scholar 

  27. Dempster A, NM L, DB R (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B Methodol 39(1):1–38

    Google Scholar 

  28. Xie X, Wu S, Lam KM, Yan H (2006) PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm. Bioinformatics 22(22):2722–2728. https://doi.org/10.1093/bioinformatics/btl482

    Article  CAS  PubMed  Google Scholar 

  29. Altman NS (1992) An introduction to Kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185

    Google Scholar 

  30. Rennie JDM (2003) Tackling the poor assumptions of naive Bayes text classifiers. In: Proceedings of the twentieth International Conference on Machine Learning (ICML-2003), Washington, DC, pp 616–623

    Google Scholar 

  31. Ma C, Xin M, Feldmann KA, Wang X (2014) Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26(2):520–537. https://doi.org/10.1105/tpc.113.121913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Feng D, Li R, Chernikov A, Chrisochoides N, Osgood C, Konikoff C, Newfeld S, Kumar S, Ji S (2013) A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis. BMC Bioinformatics 14:372. https://doi.org/10.1186/1471-2105-14-372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Ferrari L, Mitchell JB (2014) From sequence to enzyme mechanism using multi-label machine learning. BMC Bioinformatics 15:150. https://doi.org/10.1186/1471-2105-15-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Savojardo C, Fariselli P, Casadio R (2013) BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics 29(4):504–505. https://doi.org/10.1093/bioinformatics/bts728

    Article  CAS  PubMed  Google Scholar 

  35. Hocking TD, Goerner-Potvin P, Morin A, Shao X, Pastinen T, Bourque G (2017) Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning. Bioinformatics 33(4):491–499. https://doi.org/10.1093/bioinformatics/btw672

    Article  PubMed  Google Scholar 

  36. Hepler NL, Scheffler K, Weaver S, Murrell B, Richman DD, Burton DR, Poignard P, Smith DM, Kosakovsky Pond SL (2014) IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform. PLoS Comput Biol 10(9):e1003842. https://doi.org/10.1371/journal.pcbi.1003842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Somarowthu S, Ondrechen MJ (2012) POOL server: machine learning application for functional site prediction in proteins. Bioinformatics 28(15):2078–2079. https://doi.org/10.1093/bioinformatics/bts321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryvkin P, Leung YY, Ungar LH, Gregory BD, Wang LS (2014) Using machine learning and high-throughput RNA sequencing to classify the precursors of small non-coding RNAs. Methods 67(1):28–35. https://doi.org/10.1016/j.ymeth.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Spinella JF, Mehanna P, Vidal R, Saillour V, Cassart P, Richer C, Ouimet M, Healy J, Sinnett D (2016) SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing. BMC Genomics 17(1):912. https://doi.org/10.1186/s12864-016-3281-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heinonen M, Shen H, Zamboni N, Rousu J (2012) Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 28(18):2333–2341. https://doi.org/10.1093/bioinformatics/bts437

    Article  CAS  PubMed  Google Scholar 

  41. Wu SG, Wang Y, Jiang W, Oyetunde T, Yao R, Zhang X, Shimizu K, Tang YJ, Bao FS (2016) Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Comput Biol 12(4):e1004838. https://doi.org/10.1371/journal.pcbi.1004838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu T, Jones DP (2014) Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Bioinformatics 30(20):2941–2948. https://doi.org/10.1093/bioinformatics/btu430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vervier K, Mahe P, Tournoud M, Veyrieras JB, Vert JP (2016) Large-scale machine learning for metagenomics sequence classification. Bioinformatics 32(7):1023–1032. https://doi.org/10.1093/bioinformatics/btv683

    Article  CAS  PubMed  Google Scholar 

  44. Pasolli E, Truong DT, Malik F, Waldron L, Segata N (2016) Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 12(7):e1004977. https://doi.org/10.1371/journal.pcbi.1004977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pybus M, Luisi P, Dall’Olio GM, Uzkudun M, Laayouni H, Bertranpetit J, Engelken J (2015) Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics 31(24):3946–3952. https://doi.org/10.1093/bioinformatics/btv493

    Article  CAS  PubMed  Google Scholar 

  46. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30(18):2592–2597. https://doi.org/10.1093/bioinformatics/btu352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao R, Adhikari B, Bhattacharya D, Sun M, Hou J, Cheng J (2017) QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. Bioinformatics 33(4):586–588. https://doi.org/10.1093/bioinformatics/btw694

    Article  PubMed  Google Scholar 

  48. Gangal R, Sharma P (2005) Human pol II promoter prediction: time series descriptors and machine learning. Nucleic Acids Res 33(4):1332–1336. https://doi.org/10.1093/nar/gki271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mort M, Sterne-Weiler T, Li B, Ball EV, Cooper DN, Radivojac P, Sanford JR, Mooney SD (2014) MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 15(1):R19. https://doi.org/10.1186/gb-2014-15-1-r19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busser BW, Taher L, Kim Y, Tansey T, Bloom MJ, Ovcharenko I, Michelson AM (2012) A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis. PLoS Genet 8(3):e1002531. https://doi.org/10.1371/journal.pgen.1002531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sutphin GL, Mahoney JM, Sheppard K, Walton DO, Korstanje R (2016) WORMHOLE: novel least diverged ortholog prediction through machine learning. PLoS Comput Biol 12(11):e1005182. https://doi.org/10.1371/journal.pcbi.1005182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, Song J (2015) GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 31(9):1411–1419. https://doi.org/10.1093/bioinformatics/btu852

    Article  CAS  PubMed  Google Scholar 

  53. Kauffman C, Karypis G (2009) LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Bioinformatics 25(23):3099–3107. https://doi.org/10.1093/bioinformatics/btp561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Savojardo C, Fariselli P, Alhamdoosh M, Martelli PL, Pierleoni A, Casadio R (2011) Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization. Bioinformatics 27(16):2224–2230. https://doi.org/10.1093/bioinformatics/btr387

    Article  CAS  PubMed  Google Scholar 

  55. Aydin Z, Murray JI, Waterston RH, Noble WS (2010) Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo. BMC Bioinformatics 11:84. https://doi.org/10.1186/1471-2105-11-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsakanikas P, Manolakos ES (2011) Protein spot detection and quantification in 2-DE gel images using machine-learning methods. Proteomics 11(10):2038–2050. https://doi.org/10.1002/pmic.201000601

    Article  CAS  PubMed  Google Scholar 

  57. Hong SH, Cortesio CL, Drubin DG (2015) Machine-learning-based analysis in genome-edited cells reveals the efficiency of clathrin-mediated endocytosis. Cell Rep 12(12):2121–2130. https://doi.org/10.1016/j.celrep.2015.08.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu A, Leow LK, Ramli R, Omar H (2016) Classification of Suncus murinus species complex (Soricidae: Crocidurinae) in Peninsular Malaysia using image analysis and machine learning approaches. BMC Bioinformatics 17(Suppl 19):505. https://doi.org/10.1186/s12859-016-1362-5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hamp T, Rost B (2015) More challenges for machine-learning protein interactions. Bioinformatics 31(10):1521–1525. https://doi.org/10.1093/bioinformatics/btu857

    Article  CAS  PubMed  Google Scholar 

  60. Ballester PJ, Mitchell JB (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26(9):1169–1175. https://doi.org/10.1093/bioinformatics/btq112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reynes C, Host H, Camproux AC, Laconde G, Leroux F, Mazars A, Deprez B, Fahraeus R, Villoutreix BO, Sperandio O (2010) Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 6(3):e1000695. https://doi.org/10.1371/journal.pcbi.1000695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding H, Takigawa I, Mamitsuka H, Zhu S (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15(5):734–747. https://doi.org/10.1093/bib/bbt056

    Article  PubMed  Google Scholar 

  63. Bauer T, Eils R, Konig R (2011) RIP: the regulatory interaction predictor—a machine learning-based approach for predicting target genes of transcription factors. Bioinformatics 27(16):2239–2247. https://doi.org/10.1093/bioinformatics/btr366

    Article  CAS  PubMed  Google Scholar 

  64. Jha A, Shankar R (2011) Employing machine learning for reliable miRNA target identification in plants. BMC Genomics 12:636. https://doi.org/10.1186/1471-2164-12-636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 23(22):2987–2992. https://doi.org/10.1093/bioinformatics/btm484

    Article  CAS  PubMed  Google Scholar 

  66. Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11:292. https://doi.org/10.1186/1471-2105-11-292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA, Steele MP, Flaherty KR, Brown KK, Farah H, Bukstein MJ, Pardo A, Selman M, Wolters PJ, Nathan SD, Colby TV, Myers JL, Katzenstein AL, Raghu G, Kennedy GC (2015) Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med 3(6):473–482. https://doi.org/10.1016/S2213-2600(15)00140-X

    Article  CAS  PubMed  Google Scholar 

  68. Richardson AM, Lidbury BA (2013) Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC Bioinformatics 14:206. https://doi.org/10.1186/1471-2105-14-206

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu Q, Sung AH, Chen Z, Liu J, Chen L, Qiao M, Wang Z, Huang X, Deng Y (2011) Gene selection and classification for cancer microarray data based on machine learning and similarity measures. BMC Genomics 12(Suppl 5):S1. https://doi.org/10.1186/1471-2164-12-S5-S1

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Wen X, Lu Y, Yao Y, Zhao H (2016) Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases. Oncotarget 7(11):12612–12622. https://doi.org/10.18632/oncotarget.7278

    Article  PubMed  PubMed Central  Google Scholar 

  71. Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS (2017) A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics 18(1):127. https://doi.org/10.1186/s12864-017-3519-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy AB, Abramson V, Bhave SR, Levy MA, Xu H, Yankeelov TE (2013) Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J Am Med Inform Assoc 20(4):688–695. https://doi.org/10.1136/amiajnl-2012-001332

    Article  PubMed  PubMed Central  Google Scholar 

  73. De Bari B, Vallati M, Gatta R, Lestrade L, Manfrida S, Carrie C, Valentini V (2016) Development and validation of a machine learning-based predictive model to improve the prediction of inguinal status of anal cancer patients: a preliminary report. Oncotarget. https://doi.org/10.18632/oncotarget.10749

  74. Lee BJ, Shin MS, YJ O, Oh HS, Ryu KH (2009) Identification of protein functions using a machine-learning approach based on sequence-derived properties. Proteome Sci 7:27. https://doi.org/10.1186/1477-5956-7-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mordelet F, Vert JP (2011) ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples. BMC Bioinformatics 12:389. https://doi.org/10.1186/1471-2105-12-389

    Article  PubMed  PubMed Central  Google Scholar 

  76. Torii M, Wagholikar K, Liu H (2011) Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc 18(5):580–587. https://doi.org/10.1136/amiajnl-2011-000155

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H (2011) A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 18(5):601–606. https://doi.org/10.1136/amiajnl-2011-000163

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ware H, Mullett CJ, Jagannathan V, El-Rawas O (2012) Machine learning-based coreference resolution of concepts in clinical documents. J Am Med Inform Assoc 19(5):883–887. https://doi.org/10.1136/amiajnl-2011-000774

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wu Y, Levy MA, Micheel CM, Yeh P, Tang B, Cantrell MJ, Cooreman SM, Xu H (2012) Identifying the status of genetic lesions in cancer clinical trial documents using machine learning. BMC Genomics 13(Suppl 8):S21. https://doi.org/10.1186/1471-2164-13-S8-S21

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bravo A, Li TS, Su AI, Good BM, Furlong LI (2016) Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text. Database. https://doi.org/10.1093/database/baw094

  81. Yip KY, Cheng C, Gerstein M (2013) Machine learning and genome annotation: a match meant to be? Genome Biol 14(5):205. https://doi.org/10.1186/gb-2013-14-5-205

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xu X, Hoang S, Mayo MW, Bekiranov S (2010) Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinformatics 11:396. https://doi.org/10.1186/1471-2105-11-396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Santis M, Rinaldi F, Falcone E, Lucidi S, Piaggio G, Gurtner A, Farina L (2014) Combining optimization and machine learning techniques for genome-wide prediction of human cell cycle-regulated genes. Bioinformatics 30(2):228–233. https://doi.org/10.1093/bioinformatics/btt671

    Article  CAS  PubMed  Google Scholar 

  84. Kangas LJ, Metz TO, Isaac G, Schrom BT, Ginovska-Pangovska B, Wang L, Tan L, Lewis RR, Miller JH (2012) In silico identification software (ISIS): a machine learning approach to tandem mass spectral identification of lipids. Bioinformatics 28(13):1705–1713. https://doi.org/10.1093/bioinformatics/bts194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Acharjee A, Ament Z, West JA, Stanley E, Griffin JL (2016) Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinformatics 17(Suppl 15):440. https://doi.org/10.1186/s12859-016-1292-2

    Article  PubMed  Google Scholar 

  86. Gorkin DU, Lee D, Reed X, Fletez-Brant C, Bessling SL, Loftus SK, Beer MA, Pavan WJ, McCallion AS (2012) Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Res 22(11):2290–2301. https://doi.org/10.1101/gr.139360.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding Y, Tang S, Liao SG, Jia J, Oesterreich S, Lin Y, Tseng GC (2014) Bias correction for selecting the minimal-error classifier from many machine learning models. Bioinformatics 30(22):3152–3158. https://doi.org/10.1093/bioinformatics/btu520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang Y, Wu QM (2016) Extreme learning machine with subnetwork hidden nodes for regression and classification. IEEE Trans Cybernetics 46(12):2885–2898. https://doi.org/10.1109/TCYB.2015.2492468

    Article  Google Scholar 

  89. Kircher M, Stenzel U, Kelso J (2009) Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol 10(8):R83. https://doi.org/10.1186/gb-2009-10-8-r83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ratsch G, Sonnenburg S, Srinivasan J, Witte H, Muller KR, Sommer RJ, Scholkopf B (2007) Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Comput Biol 3(2):e20. https://doi.org/10.1371/journal.pcbi.0030020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chou WC, Ma Q, Yang S, Cao S, Klingeman DM, Brown SD, Xu Y (2015) Analysis of strand-specific RNA-seq data using machine learning reveals the structures of transcription units in Clostridium thermocellum. Nucleic Acids Res 43(10):e67. https://doi.org/10.1093/nar/gkv177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Capriotti E, Altman RB (2011) A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics 98(4):310–317. https://doi.org/10.1016/j.ygeno.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swan AL, Stekel DJ, Hodgman C, Allaway D, Alqahtani MH, Mobasheri A, Bacardit J (2015) A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data. BMC Genomics 16(Suppl 1):S2. https://doi.org/10.1186/1471-2164-16-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi P, Ray S, Zhu Q, Kon MA (2011) Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinformatics 12:375. https://doi.org/10.1186/1471-2105-12-375

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lyons-Weiler J, Patel S, Bhattacharya S (2003) A classification-based machine learning approach for the analysis of genome-wide expression data. Genome Res 13(3):503–512. https://doi.org/10.1101/gr.104003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Held E, Cape J, Tintle N (2016) Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data. BMC Proc 10(Suppl 7):141–145. https://doi.org/10.1186/s12919-016-0020-2

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jamal S, Goyal S, Shanker A, Grover A (2016) Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. BMC Genomics 17(1):807. https://doi.org/10.1186/s12864-016-3108-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma B, Charkowski AO, Glasner JD, Perna NT (2014) Identification of host-microbe interaction factors in the genomes of soft rot-associated pathogens Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 with supervised machine learning. BMC Genomics 15:508. https://doi.org/10.1186/1471-2164-15-508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang X, Su X, Cui X, Ning K (2015) MetaBoot: a machine learning framework of taxonomical biomarker discovery for different microbial communities based on metagenomic data. PeerJ 3:e993. https://doi.org/10.7717/peerj.993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khanna S, Tosh PK (2014) A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc 89(1):107–114. https://doi.org/10.1016/j.mayocp.2013.10.011

    Article  CAS  Google Scholar 

  101. Drenthen MAM, Jozef KFW, Proctor J (2009) New visions of nature. Springer, New York

    Book  Google Scholar 

  102. Knights D, Costello EK, Knight R (2011) Supervised classification of human microbiota. FEMS Microbiol Rev 35(2):343–359. https://doi.org/10.1111/j.1574-6976.2010.00251.x

    Article  CAS  PubMed  Google Scholar 

  103. Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, Pei Z, Blaser MJ, Aliferis CF, Alekseyenko AV (2013) A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome 1(1):11. https://doi.org/10.1186/2049-2618-1-11

    Article  PubMed  PubMed Central  Google Scholar 

  104. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631–643. https://doi.org/10.1093/bioinformatics/bti033

    Article  CAS  PubMed  Google Scholar 

  105. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  106. Park Y, Kellis M (2015) Deep learning for regulatory genomics. Nat Biotechnol 33(8):825–826. https://doi.org/10.1038/nbt.3313

    Article  CAS  PubMed  Google Scholar 

  107. Angermueller C, Parnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(7):878. https://doi.org/10.15252/msb.20156651

    Article  PubMed  PubMed Central  Google Scholar 

  108. Min S, Lee B, Yoon S (2016) Deep learning in bioinformatics. Brief Bioinform. https://doi.org/10.1093/bib/bbw068

  109. Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2017) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. https://doi.org/10.1093/bib/bbx044

  110. Uziela K, Menendez Hurtado D, Shu N, Wallner B, Elofsson A (2017) ProQ3D: improved model quality assessments using deep learning. Bioinformatics 33(10):1578–1580. https://doi.org/10.1093/bioinformatics/btw819

    Article  PubMed  Google Scholar 

  111. Liu F, Ren C, Li H, Zhou P, Bo X, Shu W (2016) De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics 32(5):641–649. https://doi.org/10.1093/bioinformatics/btv643

    Article  CAS  PubMed  Google Scholar 

  112. Kelley DR, Snoek J, Rinn JL (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 26(7):990–999. https://doi.org/10.1101/gr.200535.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, Shu W (2017) BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx105

  114. Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J (2016) A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res 44(4):e32. https://doi.org/10.1093/nar/gkv1025

    Article  PubMed  Google Scholar 

  115. Quang D, Xie X (2016) DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res 44(11):e107. https://doi.org/10.1093/nar/gkw226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol 13(1):e1005324. https://doi.org/10.1371/journal.pcbi.1005324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiong D, Zeng J, Gong H (2017) A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx296

  118. Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z, Feng DD (2016) DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinformatics 17(Suppl 17):476. https://doi.org/10.1186/s12859-016-1334-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kraus OZ, Ba JL, Frey BJ (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12):i52–i59. https://doi.org/10.1093/bioinformatics/btw252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ, Boone C, Andrews BJ (2017) Automated analysis of high-content microscopy data with deep learning. Mol Syst Biol 13(4):924. https://doi.org/10.15252/msb.20177551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buggenthin F, Buettner F, Hoppe PS, Endele M, Kroiss M, Strasser M, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Schroeder T, Theis FJ, Marr C (2017) Prospective identification of hematopoietic lineage choice by deep learning. Nat Methods 14(4):403–406. https://doi.org/10.1038/nmeth.4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, Elison JT, Swanson MR, Zhu H, Botteron KN, Collins DL, Constantino JN, Dager SR, Estes AM, Evans AC, Fonov VS, Gerig G, Kostopoulos P, McKinstry RC, Pandey J, Paterson S, Pruett JR, Schultz RT, Shaw DW, Zwaigenbaum L, Piven J, IBIS Network; Clinical Sites; Data Coordinating Center; Image Processing Core; Statistical Analysis (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641):348–351. https://doi.org/10.1038/nature21369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  Google Scholar 

  124. Chen Y, Li Y, Narayan R, Subramanian A, Xie X (2016) Gene expression inference with deep learning. Bioinformatics 32(12):1832–1839. https://doi.org/10.1093/bioinformatics/btw074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen JH, Asch SM (2017) Machine learning and prediction in medicine - beyond the peak of inflated expectations. N Engl J Med 376(26):2507–2509. https://doi.org/10.1056/NEJMp1702071

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Yu, Xt., Wang, L., Zeng, T. (2018). Revisit of Machine Learning Supported Biological and Biomedical Studies. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics