Skip to main content

Isolating Embryonic Cardiac Progenitors and Cardiac Myocytes by Fluorescence-Activated Cell Sorting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1752))

Abstract

Isolation of highly purified populations of embryonic cardiomyocytes enables the study of congenital cardiac phenotypes at the cellular level. Fluorescent-activated cell sorting (FACS) is normally used to isolate fluorescently tagged cells. Here we describe the isolation of differentiating mouse embryonic cardiac progenitors and cardiomyocytes at embryonic day (E) 9.5 and E13.5, respectively by FACS. Over 50,000 differentiating cardiac progenitors and 200,000 cardiomyocytes can be obtained in a single prep using the methods described.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Loken MR, Herzenber LA (1975) Analysis of cell populations with a fluorescence-activated cell sorter. Ann N Y Acad Sci 254:163–171

    Article  CAS  PubMed  Google Scholar 

  2. Han Y, Gu Y, Zhang AC, Lo YH (2016) Review: imaging technologies for flow cytometry. Lab Chip 16(24):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48(10):1819–1827

    CAS  PubMed  Google Scholar 

  4. Pontén A, Walsh S, Malan D, Xian X, Schéele S, Tarnawski L, Fleischmann BK, Jovinge S (2013) FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression. PLoS One 8(12):e82403

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gantz JA, Palpant NJ, Welikson RE, Hauschka SD, Murry CE, Laflamme MA (2012) Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS One 7(10):e46971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee MY, Sun B, Schliffke S, Yue Z, Ye M, Paavola J, Bozkulak EC, Amos PJ, Ren Y, Ju R, Jung YW, Ge X, Yue L, Ehrlich BE, Qyang Y (2012) Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Res 1:49–57

    Article  Google Scholar 

  8. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisén J (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194

    Article  CAS  PubMed  Google Scholar 

  9. Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG (2012) Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44(3):343–347

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE (2013) Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 128(2):101–114

    Article  CAS  PubMed  Google Scholar 

  12. Hamdani N, Kooij V, van Dijk S, Merkus D, Paulus WJ, Remedios CD, Duncker DJ, Stienen GJ, van der Velden J (2008) Sarcomeric dysfunction in heart failure. Cardiovasc Res 77(4):649–658

    Article  CAS  PubMed  Google Scholar 

  13. Song L, Zhao M, Wu B, Zhou B, Wang Q, Jiao K (2011) Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos. Dev Dyn 240(1):211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119(2):419–431

    CAS  PubMed  Google Scholar 

  16. Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR (2008) Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 3(7):e2532

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank The SickKids-UHN Flow Cytometry Facility for help with FACS, and The Centre for Phenogenomics (TCP) for mouse husbandry. This work was supported by the Heart and Stroke Foundation of Canada (G-17-0018613), the Natural Sciences and Engineering Research Council of Canada (NSERC) (500865), the Canadian Institutes of Health Research (CIHR) (PJT-149046), and Operational Funds from the Hospital for Sick Children to P.D.-O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Delgado-Olguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmed, A., Delgado-Olguin, P. (2018). Isolating Embryonic Cardiac Progenitors and Cardiac Myocytes by Fluorescence-Activated Cell Sorting. In: Delgado-Olguin, P. (eds) Mouse Embryogenesis. Methods in Molecular Biology, vol 1752. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7714-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7714-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7713-0

  • Online ISBN: 978-1-4939-7714-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics