Skip to main content

Flow Cytometry and Lineage Tracing Study for Identification of Adipocyte Precursor Cell (APC) Populations

  • Protocol
  • First Online:
Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1752))

Abstract

Flow cytometry and fluorescence-activated cell sorting (FACS) techniques have significantly advanced the characterization of adipocyte precursor cell (APC) populations. They allow immunophenotyping, quantification, and isolation of distinct populations, which is critical for understanding adipose tissue development and homeostasis. Here, we describe the identification and purification of adipocyte precursor cells using flow cytometry and FACS, defined by previously established surface marker profiles. In addition, we describe the mouse models and whole adipose tissue visualization techniques that will enable us to characterize the plasticity and the cellular origin of APCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park A, Kim WK, Bae KH (2014) Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 6(1):33–42

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263

    Article  CAS  PubMed  Google Scholar 

  3. Moulin K et al (2001) Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochem J 356(Pt 2):659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uhm M, Saltiel AR (2015) White, brown, and beige; type 2 immunity gets hot. Immunity 42(1):15–17

    Article  CAS  PubMed  Google Scholar 

  5. Bostrom P et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu X et al (2011) Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 300(5):R1115–R1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenwald M, Wolfrum C (2014) The origin and definition of brite versus white and classical brown adipocytes. Adipocytes 3(1):4–9

    Article  Google Scholar 

  8. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896

    Article  CAS  PubMed  Google Scholar 

  9. Wu J et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hui X et al (2015) Adiponectin enhances cold-induced Browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab 22(2):279–290

    Article  CAS  PubMed  Google Scholar 

  11. Odegaard JI et al (2016) Perinatal licensing of thermogenesis by IL-33 and ST2. Cell 166(4):841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenwald M et al (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15(6):659–667

    Article  CAS  PubMed  Google Scholar 

  13. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363

    Article  CAS  PubMed  Google Scholar 

  14. Jeffery E et al (2014) Characterization of Cre recombinase models for the study of adipose tissue. Adipocytes 3(3):206–211

    Article  Google Scholar 

  15. Krueger KC et al (2014) Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Reports 3(6):1147–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berry DC, Jiang Y, Graff JM (2016) Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7:10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148(1–2):33–45

    Article  CAS  PubMed  Google Scholar 

  18. Livet J et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62

    Article  CAS  PubMed  Google Scholar 

  19. Berry R, Rodeheffer MS (2013) Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15(3):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muzumdar MD et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605

    Article  CAS  PubMed  Google Scholar 

  21. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249

    Article  CAS  PubMed  Google Scholar 

  22. Tang W et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115

    Article  CAS  PubMed  Google Scholar 

  24. Tran KV et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15(2):222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta RK et al (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15(2):230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Pilot and Feasibility Study Grant of Banting & Best Diabetes Centre (BBDC), Centre for Healthy Active Kids (CHAK) Micro-grant and Sickkids Start-up fund to H.-K.S. J.-H.M is supported by the Restracomp fellowship from The Hospital for Sick Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon-Ki Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.H., Yeganeh, A., Konoeda, H., Moon, J.H., Sung, HK. (2018). Flow Cytometry and Lineage Tracing Study for Identification of Adipocyte Precursor Cell (APC) Populations. In: Delgado-Olguin, P. (eds) Mouse Embryogenesis. Methods in Molecular Biology, vol 1752. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7714-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7714-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7713-0

  • Online ISBN: 978-1-4939-7714-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics