Skip to main content

RNA-Seq-Based Transcript Structure Analysis with TrBorderExt

  • Protocol
  • First Online:
Book cover Transcriptome Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

RNA-Seq has become a routine strategy for genome-wide gene expression comparisons in bacteria. Despite lower resolution in transcript border parsing compared with dRNA-Seq, TSS-EMOTE, Cappable-seq, Term-seq, and others, directional RNA-Seq still illustrates its advantages: low cost, quantification and transcript border analysis with a medium resolution (±10–20 nt). To facilitate mining of directional RNA-Seq datasets especially with respect to transcript structure analysis, we developed a tool, TrBorderExt, which can parse transcript start sites and termination sites accurately in bacteria. A detailed protocol is described in this chapter for how to use the software package step by step to identify bacterial transcript borders from raw RNA-Seq data. The package was developed with Perl and R programming languages, and is accessible freely through the website: http://www.szu-bioinf.org/TrBorderExt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-Seq. Curr Opin Microbiol 23:133–140

    Article  CAS  PubMed  Google Scholar 

  2. Kröger C, Dillon SC, Cameron ADS, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hébrard M, Händler K et al (2012) The transcriptional landscape and small RNAs of salmonella enterica serovar Typhimurium. Proc Natl Acad Sci 109:E1277–E1286

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wright MS, Jacobs MR, Bonomo RA, Adams MD (2017) Transcriptome remodeling of acinetobacter baumannii during infection and treatment. MBio 8(2):e02193–e02116

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao F, Wang Y, An H, Hao Y, Hu X, Liao X (2016) New insights into the formation of viable but nonculturable Escherichia coli O157:H7 induced by high-pressure CO2. MBio 7(4):e00961–e00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, Kröger C, Cameron ADS, Townsend HGG, Köster W (2015) Bistable expression of CsgD in salmonella enterica serovar Typhimurium connects virulence to persistence. Infect Immun 83:2312–2326

    Article  PubMed  PubMed Central  Google Scholar 

  6. McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25(5):584–592

    Article  CAS  PubMed  Google Scholar 

  7. Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, Gao Y, Palsson BØ (2009) The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 27(11):1043–1049

    Article  CAS  PubMed  Google Scholar 

  8. Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM (2011) Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in anabaena sp. PCC7120. Proc Natl Acad Sci U S A 108(50):20130–20135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colgan AM, Cameron AD, Kröger C (2017) If it transcribes, we can sequence it: mining the complexities of host-pathogen-environment interactions using RNA-Seq. Curr Opin Microbiol 36:37–46

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, MacKenzie KD, White AP (2015) An empirical strategy to detect bacterial transcript structure from directional RNA-Seq transcriptome data. BMC Genomics 16:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen helicobacter pylori. Nature 464(7286):250–255

    Article  CAS  PubMed  Google Scholar 

  12. Prados J, Linder P, Redder P (2016) TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens. BMC Genomics 17:849

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ettwiller L, Buswell J, Yigit E, Schildkraut I (2016) A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genomics 17:199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R (2016) Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352(6282):aad9822

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jorjani H, Zavolan M (2014) TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data. Bioinformatics 30(7):971–974

    Article  CAS  PubMed  Google Scholar 

  16. Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S (2014) TSSAR: TSS annotation regime for dRNA-Seq data. BMC Bioinformatics 15:89

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bischler T, Kopf M, Voß B (2014) Transcript mapping based on dRNA-Seq data. BMC Bioinformatics 15:122

    Article  PubMed  PubMed Central  Google Scholar 

  18. Promworn Y, Kaewprommal P, Shaw PJ, Intarapanich A, Tongsima S, Piriyapongsa J (2017) ToNER: a tool for identifying nucleotide enrichment signals in feature-enriched RNA-Seq data. PLoS One 12(5):e0178483

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a Natural Science Funding of Shenzhen (JCYJ201607115221141) and a Shenzhen Peacock Plan fund (827-000116) to YW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yejun Wang or Aaron P. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Y., Sun, Ma., White, A.P. (2018). RNA-Seq-Based Transcript Structure Analysis with TrBorderExt. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics