Skip to main content

Quantification of Tau Load in Alzheimer’s Disease Clinical Trials Using Positron Emission Tomography

  • Protocol
  • First Online:
Biomarkers for Alzheimer’s Disease Drug Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1750))

Abstract

Alzheimer’s disease is a neurodegenerative condition that is neuropathologically characterized by the presence of amyloid-β plaques and neurofibrillary tangles consisting of tau. Recently, several positron emission tomography (PET) tracers have been developed that yielded promising initial results. In this chapter, we discuss how tau PET can be used in the context in clinical trials. We argue that simplified reference tissue models based on dynamic data acquisition are most suitable for accurately measuring changes in tau pathology in trials tailored to reduce cerebral tau load. Therefore, we discuss the importance of tracer kinetic modeling and describe in detail how a reliable measurement of specific binding can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, Shankle WR, Elizarov A, Kolb HC (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34(2):457–468. https://doi.org/10.3233/JAD-122059

    Article  PubMed  CAS  Google Scholar 

  2. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319. https://doi.org/10.1002/ana.20009

    Article  PubMed  CAS  Google Scholar 

  3. Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30(2):346–358. https://doi.org/10.1007/s12264-013-1414-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24. https://doi.org/10.1002/ana.410410106

    Article  PubMed  CAS  Google Scholar 

  5. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771. https://doi.org/10.1016/j.neuron.2014.05.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  7. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71(5):362–381. https://doi.org/10.1097/NEN.0b013e31825018f7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rolstad S, Berg AI, Bjerke M, Johansson B, Zetterberg H, Wallin A (2013) Cerebrospinal fluid biomarkers mirror rate of cognitive decline. J Alzheimers Dis 34(4):949–956. https://doi.org/10.3233/JAD-121960

    Article  PubMed  CAS  Google Scholar 

  9. Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, Klunk WE, Mathis CA, Ikonomovic MD, Debnath ML, Vasdev N, Dickerson BC, Gomperts SN, Growdon JH, Johnson KA, Frosch MP, Hyman BT, Gomez-Isla T (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800. https://doi.org/10.1002/ana.24517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676. https://doi.org/10.1016/j.jalz.2012.11.008

    Article  PubMed  Google Scholar 

  11. Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, Kantarci K, Boeve BF, Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford NR, Dickson DW, Petersen RC, Jack CR Jr, Murray ME (2016) An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 4(1):58. https://doi.org/10.1186/s40478-016-0315-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marquie M, Siao Tick Chong M, Anton-Fernandez A, Verwer EE, Saez-Calveras N, Meltzer AC, Ramanan P, Amaral AC, Gonzalez J, Normandin MD, Frosch MP, Gomez-Isla T (2017) [F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging. Acta Neuropathol 134:619. https://doi.org/10.1007/s00401-017-1740-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, Baker SL, Vogel JW, Faria J, Schwimmer HD, Rabinovici GD, Jagust WJ (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982. https://doi.org/10.1016/j.neuron.2016.01.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, Joshi AD, Devous MD Sr, Mintun MS (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550. https://doi.org/10.1093/brain/aww023

    Article  PubMed  Google Scholar 

  15. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, Mormino E, Chhatwal J, Amariglio R, Papp K, Marshall G, Albers M, Mauro S, Pepin L, Alverio J, Judge K, Philiossaint M, Shoup T, Yokell D, Dickerson B, Gomez-Isla T, Hyman B, Vasdev N, Sperling R (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119. https://doi.org/10.1002/ana.24546

    Article  PubMed  Google Scholar 

  16. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, Lee JH, Ryu YH, Lee MS, Lyoo CH (2016) In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol 80(2):247–258. https://doi.org/10.1002/ana.24711

    Article  PubMed  CAS  Google Scholar 

  17. Ossenkoppele R, Schonhaut DR, Baker SL, O'Neil JP, Janabi M, Ghosh PM, Santos M, Miller ZA, Bettcher BM, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2015) Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol 77(2):338–342. https://doi.org/10.1002/ana.24321

    Article  PubMed  CAS  Google Scholar 

  18. Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, O’Neil JP, Janabi M, Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel KA, Kramer JH, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139(Pt 5):1551–1567. https://doi.org/10.1093/brain/aww027

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sepulcre J, Schultz AP, Sabuncu M, Gomez-Isla T, Chhatwal J, Becker A, Sperling R, Johnson KA (2016) In vivo tau, amyloid, and gray matter profiles in the aging brain. J Neurosci 36(28):7364–7374. https://doi.org/10.1523/JNEUROSCI.0639-16.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zwan MD, Ossenkoppele R, Tolboom N, Beunders AJ, Kloet RW, Adriaanse SM, Boellaard R, Windhorst AD, Raijmakers P, Adams H, Lammertsma AA, Scheltens P, van der Flier WM, van Berckel BN (2014) Comparison of simplified parametric methods for visual interpretation of 11C-Pittsburgh compound-B PET images. J Nucl Med 55(8):1305–1307. https://doi.org/10.2967/jnumed.114.139121

    Article  PubMed  Google Scholar 

  21. Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019. https://doi.org/10.2967/jnumed.116.188029

    Article  PubMed  Google Scholar 

  22. van Berckel BN, Ossenkoppele R, Tolboom N, Yaqub M, Foster-Dingley JC, Windhorst AD, Scheltens P, Lammertsma AA, Boellaard R (2013) Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med 54(9):1570–1576. https://doi.org/10.2967/jnumed.112.113654

    Article  PubMed  CAS  Google Scholar 

  23. Golla SS, Timmers T, Ossenkoppele R, Groot C, Verfaillie S, Scheltens P, van der Flier WM, Schwarte L, Mintun MA, Devous M, Schuit RC, Windhorst AD, Lammertsma AA, Boellaard R, van Berckel BN, Yaqub M (2017) Quantification of tau load using [18F]AV1451 PET. Mol Imaging Biol 19:963. https://doi.org/10.1007/s11307-017-1080-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22(1):434–442. https://doi.org/10.1016/j.neuroimage.2004.01.016

    Article  PubMed  Google Scholar 

  25. Mourik JE, Lubberink M, van Velden FH, Lammertsma AA, Boellaard R (2009) Off-line motion correction methods for multi-frame PET data. Eur J Nucl Med Mol Imaging 36(12):2002–2013. https://doi.org/10.1007/s00259-009-1193-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19(4):224–247. https://doi.org/10.1002/hbm.10123

    Article  PubMed  Google Scholar 

  27. Ossenkoppele R, Prins ND, van Berckel BN (2013) Amyloid imaging in clinical trials. Alzheimers Res Ther 5(4):36. https://doi.org/10.1186/alzrt195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840. https://doi.org/10.1097/00004647-199609000-00008

    Article  PubMed  CAS  Google Scholar 

  29. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287. https://doi.org/10.1006/nimg.1997.0303

    Article  PubMed  CAS  Google Scholar 

  30. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158. https://doi.org/10.1006/nimg.1996.0066

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tessa Timmers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Timmers, T., van Berckel, B.N.M., Lammertsma, A.A., Ossenkoppele, R. (2018). Quantification of Tau Load in Alzheimer’s Disease Clinical Trials Using Positron Emission Tomography. In: Perneczky, R. (eds) Biomarkers for Alzheimer’s Disease Drug Development. Methods in Molecular Biology, vol 1750. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7704-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7704-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7703-1

  • Online ISBN: 978-1-4939-7704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics