Skip to main content

Neuroimaging Methods for MRI Analysis in CSF Biomarkers Studies

  • Protocol
  • First Online:
Biomarkers for Alzheimer’s Disease Drug Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1750))

  • 2594 Accesses

Abstract

Among others, the existence of pathophysiological biomarkers such as cerebrospinal fluid (CSF) Aβ-42, t-tau, and p-tau preceding the onset of Alzheimer’s disease (AD) symptomatology have shifted the conceptualization of AD as a continuum. In addition, magnetic resonance imaging (MRI) enables the study of structural and functional cross-sectional correlates and longitudinal changes in vivo and, therefore, the combination of CSF data and imaging analyses emerges as a synergistic approach to understand the structural correlates related with specific AD-related biomarkers. In this chapter, we describe the methods used in neuroimaging that will allow researchers to combine data on CSF metabolites with imaging analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balasa M, Sánchez-Valle R, Antonell A et al (2014) Usefulness of biomarkers in the diagnosis and prognosis of early-onset cognitive impairment. J Alzheimers Dis 40:919–927. https://doi.org/10.3233/JAD-132195

    Article  PubMed  Google Scholar 

  2. Molinuevo JL, Gispert JD, Dubois B et al (2013) The AD-CSF-index discriminates Alzheimer’s disease patients from healthy controls: a validation study. J Alzheimers Dis 36:67–77. https://doi.org/10.3233/JAD-130203

    Article  PubMed  CAS  Google Scholar 

  3. Struyfs H, Molinuevo JL, Martin J-J et al (2014) Validation of the AD-CSF-index in autopsy-confirmed Alzheimer’s disease patients and healthy controls. J Alzheimers Dis 41:903–909. https://doi.org/10.3233/JAD-131085

    Article  PubMed  CAS  Google Scholar 

  4. Gispert JD, Rami L, Sánchez-Benavides G et al (2015) Nonlinear cerebral atrophy patterns across the Alzheimer’s disease continuum: impact of APOE4 genotype. Neurobiol Aging 36:2687–2701. https://doi.org/10.1016/j.neurobiolaging.2015.06.027

    Article  PubMed  CAS  Google Scholar 

  5. Gispert JD, Monté GC, Suárez-Calvet M et al (2017) The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimers Dement 6:50–59. https://doi.org/10.1016/j.dadm.2016.12.002

    Article  Google Scholar 

  6. Gispert JD, Suárez-Calvet M, Monté GC et al (2016) Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement 12:1259–1272. https://doi.org/10.1016/j.jalz.2016.06.005

    Article  PubMed  Google Scholar 

  7. Friston KJ et al (2007) Statistical parametric mapping : the analysis of funtional brain images. Elsevier/Academic Press, Cambridge. Print. ISBN: 9780123725608

    Chapter  Google Scholar 

  8. Mazziotta JC, Toga AW (2002) Brain mapping: the methods. Academic, New York

    Google Scholar 

  9. Toga AW, Mazziotta JC (2000) Brain mapping: the systems, vol 2. Academic, New York

    Google Scholar 

  10. Stark DD, Bradley WG (1999) Magnetic resonance imaging. Mosby, Maryland Heights

    Google Scholar 

  11. Bernstein MA, King KE, Zhou XJ, Fong W (2005) Handbook of MRI pulse sequences. Med Phys 32. https://doi.org/10.1118/1.1904597

  12. Hutton C, Bork A, Josephs O et al (2002) Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16:217–240. https://doi.org/10.1006/nimg.2001.1054

    Article  PubMed  Google Scholar 

  13. Mangin JF, Rivière D, Cachia A et al (2004) Object-based morphometry of the cerebral cortex. IEEE Trans Med Imaging 23:968–982

    Article  CAS  PubMed  Google Scholar 

  14. Samanez-Larkin GR, D’Esposito M (2008) Group comparisons: imaging the aging brain. Soc Cogn Affect Neurosci 3:290–297. https://doi.org/10.1093/scan/nsn029

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46:786–802. https://doi.org/10.1016/j.neuroimage.2008.12.037

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manjón JV, Coupé P, Concha L et al (2013) Diffusion weighted image denoising using overcomplete local PCA. PLoS One 8:e73021. https://doi.org/10.1371/journal.pone.0073021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Coupe P, Yger P, Prima S et al (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27:425–441. https://doi.org/10.1109/TMI.2007.906087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Scher AI, Xu Y, Korf ESC et al (2007) Hippocampal shape analysis in Alzheimer’s disease: a population-based study. NeuroImage 36:8–18. https://doi.org/10.1016/j.neuroimage.2006.12.036

    Article  PubMed  CAS  Google Scholar 

  19. Fischl B (2012) FreeSurfer. NeuroImage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tondelli M, Wilcock GK, Nichelli P et al (2012) Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiol Aging 33:825.e25–825.e36. https://doi.org/10.1016/j.neurobiolaging.2011.05.018

    Article  Google Scholar 

  21. Rametti G, Junqué C, Bartrés-Faz D et al (2010) Anterior cingulate and paracingulate sulci morphology in patients with schizophrenia. Schizophr Res 121:66–74. https://doi.org/10.1016/j.schres.2010.05.016

    Article  PubMed  Google Scholar 

  22. Habeck CG (2010) Basics of multivariate analysis in neuroimaging data. J Vis Exp:1–6. https://doi.org/10.3791/1988

  23. Ziegler G, Dahnke R, Gaser C (2012) Models of the aging brain structure and individual decline. Front Neuroinform 6:3. https://doi.org/10.3389/fninf.2012.00003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  25. Devlin JT, Poldrack RA (2007) In praise of tedious anatomy. NeuroImage 37:1033–1041. https://doi.org/10.1016/j.neuroimage.2006.09.055

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lemieux L, Salek-Haddadi A, Lund TE et al (2007) Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894–901. https://doi.org/10.1016/j.mri.2007.03.009

    Article  PubMed  Google Scholar 

  27. KR a VD, Hedden T, Venkataraman A et al (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321. https://doi.org/10.1152/jn.00783.2009

    Article  Google Scholar 

  28. Mourão-Miranda J, Bokde ALW, Born C et al (2005) Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage 28:980–995. https://doi.org/10.1016/j.neuroimage.2005.06.070

    Article  PubMed  Google Scholar 

  29. Hagler DJ, Ahmadi ME, Kuperman J et al (2009) Automated white-matter tractography using a probabilistic diffusion tensor atlas: application to temporal lobe epilepsy. Hum Brain Mapp 30:1535–1547. https://doi.org/10.1002/hbm.20619

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  PubMed  CAS  Google Scholar 

  31. KR a v D, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044

    Article  Google Scholar 

  32. Cole (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2010.00008

  33. Brugulat-Serrat A, Rojas S, Bargalló N et al (2017) Incidental findings on brain MRI of cognitively normal first-degree descendants of patients with Alzheimer’s disease: a cross-sectional analysis from the ALFA (Alzheimer and Families) project. BMJ Open 7:e013215. https://doi.org/10.1136/bmjopen-2016-013215

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113:7900–7905. https://doi.org/10.1073/pnas.1602413113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Molinuevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Falcon, C., Operto, G., Molinuevo, J.L., Gispert, J.D. (2018). Neuroimaging Methods for MRI Analysis in CSF Biomarkers Studies. In: Perneczky, R. (eds) Biomarkers for Alzheimer’s Disease Drug Development. Methods in Molecular Biology, vol 1750. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7704-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7704-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7703-1

  • Online ISBN: 978-1-4939-7704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics