Skip to main content

Gene Silencing of Human Sertoli Cells Utilizing Small Interfering RNAs

  • Protocol
  • First Online:
Sertoli Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1748))

  • 1180 Accesses

Abstract

Sertoli cells, as the unique somatic cells within the seminiferous tubules, play essential roles in regulating normal spermatogenesis. In addition, recent studies have demonstrated that Sertoli cells could have significant applications in regenerative medicine due to their great plasticity. However, the roles of genes in controlling the fate determinations of human Sertoli cells remain largely unknown. Silencing genes of human Sertoli cells utilizing small interfering RNAs (siRNAs) is an important method to explore their functions and mechanisms in human Sertoli cells. We isolated and identified human Sertoli cells. RNA interference (RNAi) was employed to probe the roles and signaling pathways of BMP6 and BMP4 in mediating the proliferation and apoptosis of human Sertoli cells. Specifically, siRNAs against BMP6 and BMP4 were used to knock down the expression levels of BMP6 and BMP4 and examine the function and mechanism in controlling the fate decisions of human Sertoli cells. In this chapter, we provided the detailed methods of RNAi in silencing BMP6 gene of human Sertoli cells. Quantitative real-time PCR demonstrated that the designed BMP6 siRNAs apparently silenced BMP6 mRNA in human Sertoli cells at 24 h after transfection. Western blots showed that the siRNAs silenced the expression of BMP6 protein effectively at 48 h after transfection. In summary, siRNAs can effectively and specifically knock down targeting genes at both transcriptional and translational levels utilizing RNAi in human Sertoli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng X et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493

    Article  CAS  PubMed  Google Scholar 

  2. Ohta H, Yomogida K, Dohmae K, Nishimune Y (2000) Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127(10):2125–2131

    CAS  PubMed  Google Scholar 

  3. Hofmann MC (2008) Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol 288(1-2):95–103. https://doi.org/10.1016/j.mce.2008.04.012. S0303-7207(08)00153-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orth JM, Gunsalus GL, Lamperti AA (1988) Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122(3):787–794. https://doi.org/10.1210/endo-122-3-787

    Article  CAS  PubMed  Google Scholar 

  5. Sheng C et al (2012) Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res 22(1):208–218. https://doi.org/10.1038/cr.2011.175

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L et al (2015) Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1 ablation. Proc Natl Acad Sci U S A 112(13):4003–4008. https://doi.org/10.1073/pnas.1422371112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis Elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  8. Fire A, Albertson D, Harrison SW, Moerman DG (1991) Production of antisense RNA leads to effective and specific inhibition of gene expression in C. Elegans muscle. Development 113(2):503–514

    CAS  PubMed  Google Scholar 

  9. Guo S, Kemphues KJ (1995) Par-1, a gene required for establishing polarity in C. Elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81(4):611–620

    Article  CAS  PubMed  Google Scholar 

  10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. https://doi.org/10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  11. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107(3):309–321

    Article  CAS  PubMed  Google Scholar 

  12. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. https://doi.org/10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  13. Bass BL (2001) RNA interference. The short answer. Nature 411(6836):428–429. https://doi.org/10.1038/35078175

    Article  CAS  PubMed  Google Scholar 

  14. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101(4):1566–1569. https://doi.org/10.1182/blood-2002-06-1685

    Article  CAS  PubMed  Google Scholar 

  15. Hai Y, Sun M, Niu M, Yuan Q, Guo Y, Li Z, He Z (2015) BMP4 promotes human Sertoli cell proliferation via Smad1/5 and ID2/3 pathway and its abnormality is associated with azoospermia. Discov Med 19(105):311–325

    PubMed  Google Scholar 

  16. Wang H et al (2017) BMP6 regulates proliferation and apoptosis of human Sertoli cells via Smad2/3 and Cyclin D1 pathway and DACH1 and TFAP2A activation. Sci Rep 7:45298. https://doi.org/10.1038/srep45298

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crews L et al (2010) Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 30(37):12252–12262. https://doi.org/10.1523/JNEUROSCI.1305-10.2010. 30/37/12252 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peretto P, Cummings D, Modena C, Behrens M, Venkatraman G, Fasolo A, Margolis FL (2002) BMP mRNA and protein expression in the developing mouse olfactory system. J Comp Neurol 451(3):267–278. https://doi.org/10.1002/cne.10343

    Article  CAS  PubMed  Google Scholar 

  19. He Z, Subramaniam D, Zhang Z, Zhang Y, Anant S (2013) Honokiol as a Radiosensitizing agent for colorectal cancers. Curr Colorectal Cancer Rep 9(4). https://doi.org/10.1007/s11888-013-0191-4

  20. Xie T, Spradling AC (1998) Decapentaplegic is essential for the maintenance and division of germline stem cells in the drosophila ovary. Cell 94(2):251–260. S0092-8674(00)81424-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Sekiya I, Colter DC, Prockop DJ (2001) BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 284(2):411–418. https://doi.org/10.1006/bbrc.2001.4898. S0006-291X(01)94898-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841. https://doi.org/10.1038/nature02041. nature02041 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309. S0092-8674(00)00121-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Asanbaeva A, Masuda K, Thonar EJ, Klisch SM, Sah RL (2008) Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech Model Mechanobiol 7(4):263–276. https://doi.org/10.1007/s10237-007-0096-8

    Article  PubMed  Google Scholar 

  25. Tobin JF, Celeste AJ (2006) Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease. Drug Discov Today 11(9-10):405–411. https://doi.org/10.1016/j.drudis.2006.03.016. S1359-6446(06)00060-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Gonen N, Quinn A, O'Neill HC, Koopman P, Lovell-Badge R (2017) Normal levels of Sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone. PLoS Genet 13(1):e1006520. https://doi.org/10.1371/journal.pgen.1006520

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, He Z (2015) Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal 13:20. https://doi.org/10.1186/s12964-015-0101-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97(17):9585–9590. https://doi.org/10.1073/pnas.160274797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He Z, Jiang J, Hofmann MC, Dym M (2007) Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 77(4):723–733. https://doi.org/10.1095/biolreprod.107.062513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He Z, Kokkinaki M, Jiang J, Zeng W, Dobrinski I, Dym M (2012) Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 825:45–57. https://doi.org/10.1007/978-1-61779-436-0_4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuping He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, H. et al. (2018). Gene Silencing of Human Sertoli Cells Utilizing Small Interfering RNAs. In: Alves, M., Oliveira, P. (eds) Sertoli Cells. Methods in Molecular Biology, vol 1748. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7698-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7698-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7697-3

  • Online ISBN: 978-1-4939-7698-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics