Skip to main content

Quantum Cascade Lasers-Based Detection of Nitric Oxide

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

Abstract

Despite the established importance of nitric oxide (NO) in many physiological and molecular processes in plants, most methods for quantifying NO are open to criticism This reflects the differing methods either lacking specificity or sensitivity, or even from an undue dependence of results on experimental conditions (i.e., chemical concentrations, pH, etc.). In this chapter we describe a protocol to measure gaseous NO produced by a biological sample using quantum cascade laser (QCL)-based spectroscopy. This technique is based on absorption of the laser light by the NO molecules which have been passed from a biological sample into an optical s cell that is equipped with two mirrors placed at both ends. This design greatly increases the interaction path length with the NO molecules due to multiple reflections of the light coupled inside the cell. Thus, the method is able to provide online, in planta measurements of the dynamics of NO production, being highly selective and sensitive (down to ppbv levels;1 ppbv = part per billion by volume mixing ratio = 1:10−9).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16(2):332–341. https://doi.org/10.1105/tpc.017822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis Thaliana suspension cultures. Plant J 24(5):667–677. https://doi.org/10.1046/j.1365-313x.2000.00911.x

    Article  CAS  PubMed  Google Scholar 

  3. Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588

    Article  CAS  PubMed  Google Scholar 

  4. Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18(3):155–159. https://doi.org/10.1007/bf00024375

    Article  CAS  Google Scholar 

  5. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159(1):11–35. https://doi.org/10.1046/j.1469-8137.2003.00804.x

    Article  CAS  Google Scholar 

  6. Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181(5):509–519. https://doi.org/10.1016/j.plantsci.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  7. Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215(6):914–923. https://doi.org/10.1007/s00425-002-0828-z

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik RA, Kao C, Wysocki G (2015) Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood. Sci Rep 5. https://doi.org/10.1038/srep09096

  9. Bakhirkin YA, Kosterev AA, Roller C, Curl RF, Tittel FK (2004) Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl Opt 43(11):2257–2266. https://doi.org/10.1364/ao.43.002257

    Article  CAS  PubMed  Google Scholar 

  10. Kosterev AA, Malinovsky AL, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2001) Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl Opt 40(30):5522–5529. https://doi.org/10.1364/ao.40.005522

    Article  CAS  PubMed  Google Scholar 

  11. McCurdy MR, Bakhirkin Y, Wysocki G, Tittel FK (2007) Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J Biomed Opt 12(3). https://doi.org/10.1117/1.2747608

  12. Menzel L, Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY, Urban W (2001) Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys B-Lasers Opt 72(7):859–863

    Article  CAS  Google Scholar 

  13. Silva ML, Sonnenfroh DM, Rosen DI, Allen MG, O'Keefe A (2005) Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl Phys B-Lasers Opt 81(5):705–710. https://doi.org/10.1007/s00340-005-1922-2

    Article  CAS  Google Scholar 

  14. Ganser H, Horstjann M, Suschek CV, Hering P, Murtz M (2004) Online monitoring of biogenic nitric oxide with a QC laser-based faraday modulation technique. Appl Phys B-Lasers Opt 78(3–4):513–517. https://doi.org/10.1007/s00340-003-1379-0

    Article  CAS  Google Scholar 

  15. Ganser H, Urban W, Brown AM (2003) The sensitive detection of NO by faraday modulation spectroscopy with a quantum cascade laser. Mol Phys 101(4–5):545–550. https://doi.org/10.1080/00268970210159460

    Article  CAS  Google Scholar 

  16. Lewicki R, Doty JH III, Curl RF, Tittel FK, Wysocki G (2009) Ultrasensitive detection of nitric oxide at 5.33 mu m by using external cavity quantum cascade laser-based faraday rotation spectroscopy. Proc Natl Acad Sci U S A 106(31):12587–12592. https://doi.org/10.1073/pnas.0906291106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kluczynski P, Lundqvist S, Westberg J (2011) Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm. Applied Physics B 103(2):451–549

    Article  CAS  Google Scholar 

  18. McManus JB, Shorter JH, Nelson DD, Zahniser MS, Glenn DE, McGovern RM (2008) Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl Phys B-Lasers Opt 92(3):387–392. https://doi.org/10.1007/s00340-008-3129-9

    Article  CAS  Google Scholar 

  19. Moeskops BWM, Cristescu SM, Harren FJM (2006) Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt Lett 31(6):823–825. https://doi.org/10.1364/ol.31.000823

    Article  CAS  PubMed  Google Scholar 

  20. Nelson DD, Shorter JH, McManus JB, Zahniser MS (2002) Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl Phys B-Lasers Opt 75(2–3):343–350. https://doi.org/10.1007/s00340-002-0979-4

    Article  CAS  Google Scholar 

  21. Lyngkjaer MF, Carver TLW, Zeyen RJ (2001) Virulent Blumeria graminis infection induces penetration susceptibility and suppresses race-specific hypersensitive resistance against avirulent attack in Mla1-barley. Physiol Mol Plant Pathol 59(5):243–256. https://doi.org/10.1006/pmpp.2001.0360

    Article  CAS  Google Scholar 

  22. Zeyen RJ, Bushnell WR, Carver TLW, Robbins MP, Clark TA, Boyles DA, Vance CP (1995) Inhibiting phenylalanine ammonia-lyase and cinnamyl-alcohol dehydrogenase suppresses Mla1 (HR) but not Mlo5 (non-HR) barley powdery mildew resistances. Physiol Mol Plant Pathol 47(2):119–140. https://doi.org/10.1006/pmpp.1995.1047

    Article  CAS  Google Scholar 

  23. Cristescu SM, Persijn ST, Hekkert STL, Harren FJM (2008) Laser-based systems for trace gas detection in life sciences. Appl Phys B-Lasers Opt 92(3):343–349. https://doi.org/10.1007/s00340-008-3127-y

    Article  CAS  Google Scholar 

  24. Cristescu SM, Marchenko D, Mandon J, Hebelstrup K, Griffith GW, Mur LAJ, Harren FJM (2013) Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives. Appl Phys B-Lasers Opt 110(2):203–211. https://doi.org/10.1007/s00340-012-5050-5

    Article  CAS  Google Scholar 

  25. Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJM, Christiansen MW, Mur LAJ, Igamberdiev AU (2014) An assessment of the biotechnological use of hemoglobin modulation in cereals. Physiol Plant 150(4):593–603. https://doi.org/10.1111/ppl.12115

    Article  CAS  PubMed  Google Scholar 

  26. Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJM, Mur LAJ (2016) ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front Plant Sci 7:709. https://doi.org/10.3389/fpls.2016.00709

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp hordei. Mol Plant Pathol 6(1):65–78. https://doi.org/10.1111/j.1364-3703.2004.00266.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Spanish Ministry of Economy and Competitiveness [AGL2016-78965-R], and the European Regional Development Funds, province of Gelderland [2009-010034]. The work of LM was supported by the BBSRC LINK Grant (BB/I016937/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Prats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Montilla-Bascón, G., Mandon, J., Harren, F.J.M., Mur, L.A.J., Cristescu, S.M., Prats, E. (2018). Quantum Cascade Lasers-Based Detection of Nitric Oxide. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics