Skip to main content

Bioinformatic Prediction of S-Nitrosylation Sites in Large Protein Datasets

  • Protocol
  • First Online:
Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

Abstract

S-nitrosylation is an essential and reversible posttranslational modification of proteins involved in numerous biological processes. The experimental determination of S-nitrosylation sites is laborious and time-consuming. Therefore, the use of computational prediction tools of this modification represents a convenient first approach to generate useful information for subsequent experimental verification. Here we describe an in silico analysis pipeline to integrate the use of several bionformatic tools while dealing with big query protein sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayat S, Hasan SA, Mori M, Fariduddin Q, Ahmad A (2009) Nitric oxide: chemistry, biosynthesis, and physiological role. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide plant physiol. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–16

    Chapter  Google Scholar 

  2. Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152. https://doi.org/10.3389/fpls.2016.00152

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kovacs I, Lindermayr C (2013) Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci 4:137. https://doi.org/10.3389/fpls.2013.00137

    PubMed  PubMed Central  Google Scholar 

  4. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MWW, Li CY (2007) Regulation of HIF-1α stability through S-nitrosylation. Mol Cell 26:63–74. https://doi.org/10.1016/j.molcel.2007.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415. https://doi.org/10.1038/nature07238

    Article  CAS  PubMed  Google Scholar 

  6. Tsang AHK, Lee Y-I, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Chung KKK (2009) S-Nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 106:4900–4905. https://doi.org/10.1073/pnas.0810595106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaki M, Kovacs I, Spannagl M, Lindermayr C (2014) Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 9:e110232. https://doi.org/10.1371/journal.pone.0110232

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yan Xu, Xiao-Jian Shao, Ling-Yun Wu, Nai-Yang Deng, Kuo-Chen Chou (2013) iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine -nitrosylation sites in proteins . PeerJ 1:e171

    Google Scholar 

  9. Yu Xue, Zexian Liu, Xinjiao Gao, Changjiang Jin, Longping Wen, Xuebiao Yao, Jian Ren, Vladimir B. Bajic (2010) GPS-SNO: Computational Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm. PLoS ONE 5 (6):e11290

    Google Scholar 

  10. Tzong-Yi Lee, Yi-Ju Chen, Tsung-Cheng Lu, Hsien-Da Huang, Yu-Ju Chen, Vladimir N. Uversky (2011) SNOSite: Exploiting Maximal Dependence Decomposition to Identify Cysteine S-Nitrosylation with Substrate Site Specificity. PLoS ONE 6 (7):e21849

    Google Scholar 

Download references

Acknowledgments

This work was supported by ERDF-cofunded projects BFU2011-22779, BFU2016-77243-P, RTC-2015-4181-2, and RTC-2016-4824-2 (MINECO), RTA2013-00068-C03-02 (INIA), P2011-CVI-7487 (Junta de Andalucía), and 201540E065 (CSIC). We acknowledge the authors and masters of the cited bioinformatics tools for the availability of the resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Alché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carmona, R., Claros, M., de Alché, J. (2018). Bioinformatic Prediction of S-Nitrosylation Sites in Large Protein Datasets. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics