Nitric Oxide pp 223-230 | Cite as

Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)

Abstract

Nitric oxide (NO) is a small diatomic molecule that regulates multiple physiological processes in animals, plants, and microorganisms. In animals, it is involved in vasodilation and neurotransmission and is present in exhaled breath. In plants, it regulates both plant immune function and numerous developmental programs. The high reactivity and short half-life of NO and cross-reactivity of its various derivatives make its quantification difficult. Different methods based on calorimetric, fluorometric, and chemiluminescent detection of NO and its derivatives are available, but all of them have significant limitations. Here we describe a method for the chemiluminescence-based quantification of NO using ozone-chemiluminescence technology in plants. This approach provides a sensitive, robust, and flexible approach for determining the levels of NO and its signaling products, protein S-nitrosothiols.

Key words

Nitric oxide S-nitrosothiols S-nitrosylation NO-measurement Nitric oxide analyzer Plant redox 

References

  1. 1.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837.  https://doi.org/10.1093/eurheartj/ehr304 CrossRefPubMedGoogle Scholar
  2. 2.
    O'dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci 88(24):11285–11289CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254(5037):1503–1506CrossRefPubMedGoogle Scholar
  4. 4.
    Yu MD, Yun BW, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Curr Opin Plant Biol 15(4):424–430.  https://doi.org/10.1016/j.pbi.2012.03.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Kolbert Z, Erdei L (2008) Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav 3(11):972–973CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Harper JE (1981) Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol 68(6):1488–1493CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53(366):103–110.  https://doi.org/10.1093/jexbot/53.366.103 CrossRefPubMedGoogle Scholar
  8. 8.
    Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella Sorokiniana. FEBS Lett 576(1–2):151–155.  https://doi.org/10.1016/.febslet.2004.09.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302(5642):100–103.  https://doi.org/10.1126/science.1086770 CrossRefPubMedGoogle Scholar
  10. 10.
    Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian ZJ, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9(417):re2.  https://doi.org/10.1126/scisignal.aad4403.ARTNre2 CrossRefPubMedGoogle Scholar
  11. 11.
    Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88(2):389–395CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4(4):128–129CrossRefPubMedGoogle Scholar
  13. 13.
    Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, Leon AM, Sandalio LM, del Rio LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224(2):246–254.  https://doi.org/10.1007/s00425-005-0205-9 CrossRefPubMedGoogle Scholar
  14. 14.
    Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138(4):372–383CrossRefPubMedGoogle Scholar
  15. 15.
    Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I (2014) S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun 5:5401.  https://doi.org/10.1038/Ncomms6401.Artn5401 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59(2):165–176.  https://doi.org/10.1093/jxb/erm293 CrossRefPubMedGoogle Scholar
  17. 17.
    Imran QM, Falak N, Hussain A, Mun BG, Sharma A, Lee SU, Kim KM, Yun BW (2016) Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in arabidopsis thaliana. Front Plant Sci 7:1712.  https://doi.org/10.3389/Fpls.2016.01712.Artn1712 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to nectrotophic pathogen Botryis cinerea in Nicotiana Benthamiana. Mol Plant-Microbe Interact 22(6):619–629.  https://doi.org/10.1094/MPMI-22-6-0619 CrossRefPubMedGoogle Scholar
  19. 19.
    Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588CrossRefPubMedGoogle Scholar
  20. 20.
    Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236(3):887–900.  https://doi.org/10.1007/s00425-012-1697-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Kovacs I, Lindermayr C (2013) Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci 4:137.  https://doi.org/10.3389/fpls.2013.00137 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Hayton TW, Legzdins P, Sharp WB (2002) Coordination and organometallic chemistry of metal−NO complexes. Chem Rev 102(4):935–992.  https://doi.org/10.1021/cr000074t CrossRefPubMedGoogle Scholar
  23. 23.
    Itoh T, Nagata K, Matsuya Y, Miyazaki M, Ohsawa A (1997) Reaction of nitric oxide with amines. J Org Chem 62(11):3582–3585.  https://doi.org/10.1021/jo962101e CrossRefGoogle Scholar
  24. 24.
    Yun BW, Skelly MJ, Yin M, Yu M, Mun BG, Lee SU, Hussain A, Spoel SH, Loake GJ (2016) Nitric oxide and S-nitrosoglutathione function additively during plant immunity. New Phytol 211(2):516–526.  https://doi.org/10.1111/nph.13903 CrossRefPubMedGoogle Scholar
  25. 25.
    Feechan A, Kwon E, Yun BW, Wang YQ, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102(22):8054–8059.  https://doi.org/10.1043/pnas.0501456102 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137(3):921–930.  https://doi.org/10.1104/pp.104.058719 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6(6):789–793CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH (2014) Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant immunity. Mol Cell 56(1):153–162.  https://doi.org/10.1016/j.molcel.2014.08.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao YX, He MH, Ding JN, Xi Q, Loake GJ, Zheng WF (2016) Regulation of anticancer styrylpyrone biosynthesis in the medicinal mushroom inonotus obliquus requires thioredoxin mediated transnitrosylation of S-nitrosoglutathione reductase. Sci Rep 6:37601.  https://doi.org/10.1038/Srep37601.Artn37601 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Coneski PN, Schoenfisch MH (2012) Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev 41(10):3753–3758.  https://doi.org/10.1039/C2CS15271A CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Griess P (1864) On a new series of bodies in which nitrogen is substituted for hydrogen. Philos Trans Royal Soc London 154:667–731CrossRefGoogle Scholar
  32. 32.
    Miles AM, Wink DA, Cook JC, Grisham MB (1996) Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol 268(A):105–120CrossRefPubMedGoogle Scholar
  33. 33.
    Samouilov A, Zweier JL (1998) Development of chemiluminescence-based methods for specific quantitation of nitrosylated thiols. Anal Biochem 258(2):322–330CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AgricultureAbdul Wali Khan UniversityMardanPakistan
  2. 2.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  3. 3.Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations