Skip to main content

Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique

  • Protocol
  • First Online:
Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

Abstract

Nitric oxide is regarded as a key signaling messenger in several organisms. Its physiological relevance is partly due to its capacity to induce posttranslational modifications of proteins through its direct or indirect reaction with specific amino acid residues. Among them, S-nitrosylation has been shown to be involved in a broad range of cellular signaling pathways both in animals and plants. The identification of S-nitrosylated proteins has been made possible by the development of the Biotin-Switch Technique (BST) in the early 2000s. Here, we describe the BST protocol we routinely use to check in vitro S-nitrosylation of recombinant proteins induced by NO donors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill AC, Bennett JH (1970) Inhibition of apparent photosynthesis by nitrogen oxides. Atmospheric Environ (1967) 4:341–348

    Article  CAS  Google Scholar 

  2. Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37:113–116

    Article  CAS  Google Scholar 

  3. Delledonne M, Xia Y, Dixon RA et al (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Google Scholar 

  4. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu M, Lamattina L, Spoel S et al (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  6. Zaffagnini M, De Mia M, Morisse S et al (2016) Protein S-nitrosylation in photosynthetic organisms: a comprehensive overview with future perspectives. Biochim Biophys Acta 1864:952–966

    Article  CAS  PubMed  Google Scholar 

  7. Lamotte O, Bertoldo JB, Besson-Bard A et al (2015) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114. https://doi.org/10.3389/fchem.2014.00114

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–19

    Google Scholar 

  9. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata – ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    Google Scholar 

  11. Romero-Puertas MC, Campostrini N, Mattè A et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  CAS  PubMed  Google Scholar 

  12. Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  CAS  PubMed  Google Scholar 

  13. Palmieri MC, Lindermayr C, Bauwe H et al (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol 152:1514–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM et al (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386

    Article  CAS  PubMed  Google Scholar 

  16. Maldonado-Alconada AM, Echevarria-Zomeno S, Lindermayr C et al (2011) Proteomic analysis of Arabidopsis protein S-nitrosylation in response to inoculation with Pseudomonas syringae. Acta Physiol Plant 33:1493–1514

    Article  CAS  Google Scholar 

  17. Astier J, Besson-Bard A, Lamotte O et al (2012) Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells. Biochem J 447:249–260

    Article  CAS  PubMed  Google Scholar 

  18. Puyaubert J, Fares A, Rézé N et al (2014) Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level. Plant Sci 215-216:150–156

    Article  CAS  PubMed  Google Scholar 

  19. Vanzo E, Ghirardo A, Merl-Pham J et al (2014) S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 9(9):e106886. https://doi.org/10.1371/journal.pone.0106886

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336

    Article  CAS  PubMed  Google Scholar 

  21. Rosnoblet C, Bègue H, Blanchard C et al (2017) Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. Plant Cell Environ 40:491–508

    Google Scholar 

  22. Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y-Q, Feechan A, Yun B-W et al (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284(4):2131–2137

    Google Scholar 

  24. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann Rev Plant Biol 63:73–105

    Article  CAS  Google Scholar 

  25. Zhelyaskov VR, Gee KR, Godwin DW (1998) Control of NO concentration in solutions of nitrosothiol compounds by light. Photochem Photobiol 67:282–288

    Article  CAS  PubMed  Google Scholar 

  26. Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 11:13977–13983

    Article  Google Scholar 

  27. Veleeparampil MM, Aravind UK, Aravindakumar CT (2009) Decomposition of S-nitrosothiols induced by UV and sunlight. Adv Phys Chem 2009:1–5

    Article  Google Scholar 

  28. Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Protein Sci 68(10.1):10.1.1–10.1.44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lamotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aimé, S., Hichami, S., Wendehenne, D., Lamotte, O. (2018). Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics