Skip to main content

Stability Testing Parameters and Issues for Nanotechnology-Based Drug Products

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Stability is one of the critical aspects in ensuring safety and efficacy of drug products, and hence its assessment has gained a paramount importance in the pharmaceutical industry. However, the stability problems and assessment of stability of drug-loaded nanoformulations remain a very challenging aspect in the pharmaceutical field. The stability issues of drug nanoparticles could arise during manufacturing, storage, and shipping. Though, recent advancement in analytical technology has offered ample tools for stability assessment of nanopharmaceuticals, they have their own limitations in terms of efficiency. In this chapter, we summarize various stability testing parameters, techniques used in their evaluation and the issues related to stability testing of nanotechnology based drug products.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pathak K, Akhtar N (2016) Nose to brain delivery of nanoformulations for neurotherapeutics in Parkinson’s disease: defining the preclinical, clinical and toxicity issues. Curr Drug Deliv. 13(8):1205–1221 (Epub ahead of print)

    Article  CAS  Google Scholar 

  2. Pattnaik S, Swain K, Rao JV, Varun T, Subudhi SK (2015) Aceclofenac nanocrystals for improved dissolution: influence of polymeric stabilizers. RSC Adv 5(112):91960–91965

    Article  CAS  Google Scholar 

  3. Pathak K, Raghuvanshi S (2015) Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet 54(4):325–357

    Article  CAS  PubMed  Google Scholar 

  4. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  5. Couvreur P, Fattal E, Legrand P et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134

    Article  CAS  PubMed  Google Scholar 

  6. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  CAS  PubMed  Google Scholar 

  7. Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21(2):107–116

    Article  CAS  Google Scholar 

  8. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121

    Article  CAS  PubMed  Google Scholar 

  9. Allen TM, Moase EH (1996) Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Deliv Rev 21(2):117–133

    Article  CAS  Google Scholar 

  10. Pattnaik S, Swain K, Manaswini P et al (2015) Fabrication of aceclofenac nanocrystals for improved dissolution: process optimization and physicochemical characterization. J Drug Deliv Sci Tech 29:199–209

    Article  CAS  Google Scholar 

  11. Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247

    Article  CAS  PubMed  Google Scholar 

  12. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16

    Article  CAS  PubMed  Google Scholar 

  13. Gao L, Zhang D, Chen M (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862

    Article  CAS  Google Scholar 

  14. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    Article  CAS  PubMed  Google Scholar 

  15. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  16. Muller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  CAS  PubMed  Google Scholar 

  17. Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  CAS  PubMed  Google Scholar 

  18. Allen T (1997) Particle measurement, 5th edn. Chapman & Hall, London

    Google Scholar 

  19. Amziane A, Belliard L, Decremps F et al (2011) Ultrafast acoustic resonance spectroscopy of gold nanostructures: towards a generation of tunable transverse waves. Phys Rev B 83:014102

    Article  CAS  Google Scholar 

  20. Kourti T (2006) Turbidimetry in particle size analysis. Encyclopedia of Analytical Chemistry. Published online: 15 Sep 2006, doi: https://doi.org/10.1002/9780470027318.a1517

  21. Matyus SP, Braun PJ, Wolak-Dinsmore J et al (2015) HDL particle number measured on the Vantera®, the first clinical NMR analyzer. Clin Biochem 48(3):148–155. https://doi.org/10.1016/j.clinbiochem.2014.11.017

    Article  PubMed  CAS  Google Scholar 

  22. Valentini M, Vaccaro A, Rehor A et al (2004) Diffusion NMR spectroscopy for the characterization of the size and interactions of colloidal matter: the case of vesicles and nanoparticles. J Am Chem Soc 126:2142–2147

    Article  CAS  PubMed  Google Scholar 

  23. Leo E, Brina B, Forni F et al (2004) In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm 278:133–141

    Article  CAS  PubMed  Google Scholar 

  24. Johnson KA (2007) Interfacial phenomena and phase behaviour in metered dose inhaler formulations. In: Hickey AJ (ed) Inhalation aerosols: physical and biological basis for therapy, 2nd edn. Informa Healthcare, New York, pp 347–372

    Google Scholar 

  25. Kuentz M, Röthlisberger D (2003) Rapid assessment of sedimentation stability in dispersions using near infrared transmission measurements during centrifugation and oscillatory rheology. Eur J Pharm Biopharm 56(3):355–361

    Article  CAS  PubMed  Google Scholar 

  26. Mishra PR, Shaal LA, Müller RH et al (2009) Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189

    Article  CAS  PubMed  Google Scholar 

  27. Pattnaik S, Swain K, Mallick S et al (2011) Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm 406:106–110

    Article  CAS  PubMed  Google Scholar 

  28. Pattnaik P, Swain K, Rao V et al (2015) Polymer co-processing of ibuprofen through compaction for improved oral absorption. RSC Adv 5(91):74720–74725

    Article  CAS  Google Scholar 

  29. Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491. https://doi.org/10.1021/nn101557e

    Article  PubMed  CAS  Google Scholar 

  30. AC S, Grubbs J, Qian S et al (2012) Probing nanoparticle interactions in cell culture media. Colloids Surf B Biointerfaces 95:96–102. https://doi.org/10.1016/j.colsurfb.2012.02.022

    Article  CAS  Google Scholar 

  31. Shaikh MV, Kala M, Nivsarkar M (2016) Development and optimization of an ex vivo colloidal stability model for nanoformulations. AAPS PharmSciTech 18(4):12881292

    Article  CAS  PubMed  Google Scholar 

  32. Lazzari S, Moscatelli D, Codari F et al (2012) Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res 14(6):920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stockhofe K, Postema JM, Schieferstein H et al (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel) 7(4):392–418

    Article  CAS  Google Scholar 

  34. Herth MM, Barz M, Moderegger D et al (2009) Radioactive labeling of defined HPMA-based polymeric structures using (18F) FETos for in vivo imaging by positron emission tomography. Biomacromolecules 10:1697–1703

    Article  CAS  PubMed  Google Scholar 

  35. Jeng C-C, Cheng S-H, Ho JA, et al (2011) Dynamic probing of nanoparticle stability in vivo: a liposomal model assessed using in situ microdialysis and optical imaging. J Nanomat 2011: Article ID 932719, 8 pages

    Article  CAS  Google Scholar 

  36. Li Y, Budamagunta MS, Luo J et al (2012) Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano 6(11):9485–9495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi KO, Aditya NP, Ko S (2014) Effect of aqueous pH and electrolyte concentration on structure, stability and flow behaviour of non-ionic surfactant based solid lipid nanoparticles. Food Chem 147:239–244

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz C, Mehnert W, Lucks JS et al (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30(1):83–96

    Article  CAS  Google Scholar 

  39. Basaran E, Demirel M, Sirmagül B et al (2010) Cyclosporine-a incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1):37–47

    Article  CAS  PubMed  Google Scholar 

  40. Konan YN, Gurny R, Allémann E (2002) Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 233(1–2):239–252

    Article  CAS  PubMed  Google Scholar 

  41. Brigger I, Armand-Lefevre L, Chaminade P et al (2003) The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res 20(4):674–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pathak, K., Pattnaik, S. (2018). Stability Testing Parameters and Issues for Nanotechnology-Based Drug Products. In: Bajaj, S., Singh, S. (eds) Methods for Stability Testing of Pharmaceuticals. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7686-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7686-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7685-0

  • Online ISBN: 978-1-4939-7686-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics