Advertisement

Methods of Study of Neuron Structural Heterogeneity: Flow Cytometry vs. Laser Interferometry

  • Ekaterina Kopeikina
  • Marina Dukhinova
  • Eugene D. Ponomarev
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)

Abstract

Neuronal cells are probably the less studied cells regarding their heterogeneity on a single cell or population levels. One of the main problems of studying of individual neurons is the presence of long processes (axons) on differentiated adult neurons that hamper their isolation without significant damage to the cells. Therefore, the most common method to study neuronal cells is immunofluorescent microscopy of sections of the brain, which remains poorly quantitative and allows analyzing a small number of fixed cells. Also, immunofluorescent microscopy has a number of staining artifacts since histology section has high level of autofluorescence and non-specific binding of fluorescent probes. Alternative methods that could overcome disadvantages of immunofluorescent histology include flow cytometry, scanning cytometry, and laser interferometry. Flow cytometry and, to some extent of degree, scanning cytometry allow performing analysis of multiple markers with a low level of non-specific background and very robust statistics. Laser interferometry allows studies intact, alive neurons without staining. Limitations and advantages of these methods are discussed in this chapter.

Keywords

Neurons Flow cytometry Laser interferometry 

Notes

Acknowledgments

The work was supported by Research Grant Council-General Research Fund grant Ref. No. 14113316 (Hong Kong) to E.D.P.

References

  1. 1.
    Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC et al (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Martínez M, Quiroga NY, Castellanos JE, Hurtado H, Hurtado H (2000) Subpoblaciones neuronales presentes en el ganglio de la raíz dorsal. Biomedica 20:248–260CrossRefGoogle Scholar
  3. 3.
    Mejias JF, Longtin A (2014) Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Front Comput Neurosci 8:107.  https://doi.org/10.3389/fncom.2014.00107 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pennartz CMA, De Jeu MTG, Geurtsen AMS, Sluiter AA, Hermes ML (1998) Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J Physiol 506:775–793CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baroni F, Mazzoni A (2014) Heterogeneity of heterogeneities in neuronal networks. Front Comput Neurosci 8:161.  https://doi.org/10.3389/fncom.2014.00161 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29.  https://doi.org/10.1007/978-1-61737-950-5_1 CrossRefPubMedGoogle Scholar
  7. 7.
    Di Nicola M, Siena S, Bregni M, Peccatori F, Magni M, Ravagnani F et al (1993) Quantization of CD34+ peripheral blood hematopoietic progenitors for autografting in cancer patients. Int J Artif Organs 16(Suppl 5):80–82PubMedGoogle Scholar
  8. 8.
    Sack U, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Emmrich F et al (2006) Multiplex analysis of cytokines in exhaled breath condensate. Cytometry A 69A:169–172CrossRefGoogle Scholar
  9. 9.
    Stratieva-Taneeva PA, Khaidukov SV, Kovalenko VA, Nazimov IV, Samokhvalova LV, Nesmeyanov VA (1993) Bispecific monoclonal antibodies to human interleukin 2 and horseradish peroxidase. Hybridoma 12:271–284CrossRefPubMedGoogle Scholar
  10. 10.
    Shapiro HM (2003) Practical flow cytometry. Wiley, New YorkCrossRefGoogle Scholar
  11. 11.
    Biggio M, Storace M, Mattia M (2013) Non-instantaneous synaptic transmission in spiking neuron networks and equivalence with delay distribution. BMC Neurosci 14:P267PubMedCentralGoogle Scholar
  12. 12.
    Somers D, Panneton WM (1984) Heterogeneity of neurons in the subnucleus interpolaris of the cat. Brain Res 309:335–340CrossRefPubMedGoogle Scholar
  13. 13.
    Luider J, Cyfra M, Johnson P, Auer I (2004) Impact of the new Beckman Coulter cytomics FC 500 5-Color flow cytometer on a regional flow cytometry clinical laboratory service. Lab Hematol 10:102–108CrossRefPubMedGoogle Scholar
  14. 14.
    Fritschy J-M (2015) Significance of GABA(A) receptor heterogeneity: clues from developing neurons. Adv Pharmacol 73:13–39.  https://doi.org/10.1016/bs.apha.2014.11.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Walsh JJ, Han MH (2014) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience 282:101–108.  https://doi.org/10.1016/j.neuroscience.2014.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brazhe (Ulyanova) NA, Erokhova LA, Churin AA, Maksimov GV (2005) The relation of different-scale membrane processes under nitric oxide influence. J Biol Phys 31:533–546.  https://doi.org/10.1007/s10867-005-2043-1 CrossRefGoogle Scholar
  17. 17.
    Tychinsky VP, Kretushev AV, Vyshenskaya TV, Tikhonov AN (2005) Coherent phase microscopy in cell biology: visualization of metabolic states. Biochim Biophys Acta Bioenerg 1708:362–366CrossRefGoogle Scholar
  18. 18.
    Brazhe AR, Brazhe NA, Maksimov GV, Ignatyev PS, Rubin AB, Mosekilde E et al (2008) Phase-modulation laser interference microscopy: an advance in cell imaging and dynamics study. J Biomed Opt 13:0340004.  https://doi.org/10.1117/1.2937213 CrossRefGoogle Scholar
  19. 19.
    Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008CrossRefPubMedGoogle Scholar
  20. 20.
    Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N (2016) Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–368.  https://doi.org/10.1016/j.neuron.2015.12.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Ekaterina Kopeikina
    • 1
  • Marina Dukhinova
    • 1
  • Eugene D. Ponomarev
    • 1
  1. 1.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong KongChina

Personalised recommendations