Advertisement

X-Ray Fluorescence-Detected Flow Cytometry

  • Andrew M. Crawford
  • James E. Penner-Hahn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)

Abstract

X-ray fluorescence-detected flow cytometry can enable the detection and characterization of ultra-trace, trace, and bulk elemental content at the cellular level using synchrotron-induced x-ray emission from fully aquated actively respiring cells. Although very much still a technique in development, this technique has been used to characterize cell-to-cell elemental variability in bovine red blood cells, Saccharomyces cerevisiae, and NIH3T3 mouse fibroblasts. Herein we describe the experimental setup and the key methodological aspects of data collection and processing.

Keywords

Cytometer Cells Flow cytometer X-ray fluorescence Metallome 

Notes

Acknowledgment

This research was funded in part by the National Science Foundation under (NSF-IDBR-0852802 to J.E.P.H.) and used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    McRae R, Lai B, Fahrni CJ (2013) Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 5(1):52–61.  https://doi.org/10.1039/c2mt20176c CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Penner-Hahn JE (2014) Technologies for detecting metals in single cells. In: Banci L (ed) Metallomics and the cell, vol 12. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-5561-1_2 Google Scholar
  3. 3.
    Zhao FJ, Moore KL, Lombi E, Zhu YG (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19(3):183–192.  https://doi.org/10.1016/j.tplants.2013.12.001 CrossRefPubMedGoogle Scholar
  4. 4.
    Kaufmann R, Hagen C, Grunewald K (2014) Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol 20:86–91.  https://doi.org/10.1016/j:cbpa.2014.05.007. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34.  https://doi.org/10.1016/j.trac.2011.11.006. CrossRefGoogle Scholar
  6. 6.
    Becker JS, Matusch A, Becker JS, Wu B, Palm C, Becker AJ, Salber D (2011) Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research. Int J Mass Spectrom 307(1-3):3–15.  https://doi.org/10.1016/j.ijms.2011.01.015 CrossRefGoogle Scholar
  7. 7.
    Wang D, Hosteen O, Fierke CA (2012) ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 111:173–181.  https://doi.org/10.1016/j.jinorgbio.2012.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    O’Malley D (2008) Imaging in depth: controversies and opportunities. In: Correia JJ, Detrich HW (eds) Biophysical tools for biologists, vol 2: In vivo techniques, vol 89. Methods in cell biology. pp 95. doi: https://doi.org/10.1016/s0091-679x(08)00605-5
  9. 9.
    Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127CrossRefPubMedGoogle Scholar
  10. 10.
    Paunesku T, Vogt S, Maser J, Lai B, Woloschak G (2006) X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 99(6):1489–1502.  https://doi.org/10.1002/jcb.21047 CrossRefPubMedGoogle Scholar
  11. 11.
    Paunesku T, Wanzer MB, Kirillova EN, Muksinova KN, Revina VS, Lyubchansky ER, Grosche B, Birschwilks M, Vogt S, Finney L, Woloschak GE (2012) X-ray fluorescence microscopy for investigation of archival tissues. Health Phys 103(2):181–186.  https://doi.org/10.1097/HP.0b013e31824e7023 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vogt S, Lai B, Finney L, Palmer B, LE W, Harris H, Paunesku T, de Jonge M, Legnini D, Maser J, Glesne D, Lay P, Woloschak G (2007) Imaging trace elements in cells with x-ray fluorescence microscopy. Microsc Microanal 13:40–41.  https://doi.org/10.1017/s1431927607076283 CrossRefGoogle Scholar
  13. 13.
    Crawford AM (2015) Methodologies in XRF Cytometry. PhD thesis, University of MichiganGoogle Scholar
  14. 14.
    Crawford AM, Kurecka P, Yim TK, Kozemchak C, Deb A, Dostal L, Sun CJ, Brewe DL, Barrea R, Penner-Hahn JE (2016) Development of a single-cell X-ray fluorescence flow cytometer. J Synchrotron Radiat 23:901–908.  https://doi.org/10.1107/s1600577516008006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of GeologyUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Chemistry and BiophysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations