Broad Immune Monitoring and Profiling of T Cell Subsets with Mass Cytometry

  • Tess Melinda Brodie
  • Vinko TosevskiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)


Mass cytometry (cytometry by time-of-flight, CyTOF) is a high-dimensional single-cell analytical technology that allows for highly multiplexed measurements of protein or nucleic acid abundances by bringing together the detection capacity of atomic mass spectroscopy and the sample preparation workflow typical of regular flow cytometry. In 2014 the mass cytometer was adapted for the acquisition of samples from microscopy slides (termed imaging mass cytometry), greatly increasing the applicability of this technology with the inclusion of spatial information. By using antibodies (or other probes) labeled with purified metal isotopes, mass cytometers are currently able to detect more than 50 different parameters at a single-cell level, exceeding the dimensionality of any other flow cytometry methodology currently on the market. This capability licenses unprecedented possibilities in many areas dealing with complex cellular mixtures (immunology, cell biology, and beyond), improving biomarker discovery and moving us closer to affordable personalized medicine than before.


Mass cytometry CyTOF Helios High-dimensional single-cell analysis T cells Immunophenotyping 



Authors thank Paulina Kulig for assistance in manuscript preparation and Annette Audigé-Schmitz for assistance in validating the panel reagents.


  1. 1.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lou X, Zhang G, Herrera I, Kinach R et al (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed Engl 46(32):6111–6114. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Majonis D, Herrera I, Ornatsky O et al (2010) Synthesis of a functional metal-chelating polymer and steps toward quantitative mass Cytometry bioassays. Anal Chem 82(21):8961–8969. CrossRefPubMedGoogle Scholar
  4. 4.
    Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. CrossRefPubMedGoogle Scholar
  5. 5.
    Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC (2013) An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immunother 62(5):955–965. CrossRefPubMedGoogle Scholar
  6. 6.
    Spidlen J, Moore W, Parks D et al (2010) Data file standard for flow cytometry, version FCS 3.1. Cytometry A 77(1):97–100. PubMedPubMedCentralGoogle Scholar
  7. 7.
    Amir ED, Davis K, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotech 31(6):545–552. CrossRefGoogle Scholar
  8. 8.
    Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096. CrossRefPubMedGoogle Scholar
  10. 10.
    Saeys Y, Gassen SV, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16(7):449–462. CrossRefPubMedGoogle Scholar
  11. 11.
    Mair F, Hartmann FJ, Mrdjen Det al. (2015) The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 46(1):34–43. CrossRefPubMedGoogle Scholar
  12. 12.
    Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Machine Learn Res 9:2579–2605Google Scholar
  13. 13.
    Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645. CrossRefPubMedGoogle Scholar
  14. 14.
    Mei HE, Leipold MD, Maecker HT (2016) Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 89(3):292–300. CrossRefPubMedGoogle Scholar
  15. 15.
    Catena R, Özcan A, Zivanovic N, Bodenmiller B (2016) Enhanced multiplexing in mass cytometry using osmium and ruthenium tetroxide species. Cytometry A 89(5):491–497. CrossRefPubMedGoogle Scholar
  16. 16.
    Mei HE, Leipold MD, Schulz AR, Chester C, Maecker HT (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194(4):2022–2031. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schulz AR, Stanislawiak S, Baumgart S, Grützkau A, Mei HE (2017) Silver nanoparticles for the detection of cell surface antigens in mass cytometry. Cytometry A 91(1):25–33. CrossRefPubMedGoogle Scholar
  19. 19.
    Behbehani GK, Bendall SC, Clutter MR et al (2012) Single cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81((7):552–566. CrossRefGoogle Scholar
  20. 20.
    Fienberg H, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single cell mass cytometry. Cytometry A 81(6):467–475. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Mass Cytometry FacilityUniversity of ZurichZurichSwitzerland

Personalised recommendations