Skip to main content

Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy

  • Protocol
  • First Online:
Cellular Heterogeneity

Abstract

Despite extensive research in the area, current understanding of the structural organization of higher-order chromatin topology (between 20 and 200 nm) is limited due to a lack of proper imaging techniques at these length scales. The organization of chromatin at these scales defines the physical context (nanoenvironment) in which many important biological processes occur. Improving our understanding of the nanoenvironment is crucial because it has been shown to play a critical functional role in the regulation of chemical reactions. Recent progress in partial wave spectroscopic (PWS) microscopy enables real-time measurement of higher-order chromatin organization within label-free live cells. Specifically, PWS quantifies the nanoscale variations in mass density (heterogeneity) within the cell. These advancements have made it possible to study the functional role of chromatin topology, such as its regulation of the global transcriptional state of the cell and its role in the development of cancer. In this chapter, the importance of studying chromatin topology is explained, the theory and instrumentation of PWS are described, the measurements and analysis processes for PWS are laid out in detail, and common issues, troubleshooting steps, and validation techniques are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148(3):458–472. https://doi.org/10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda H, Putzel GG, Backman V, Szleifer I (2014) Macromolecular crowding as a regulator of gene transcription. Biophys J 106(8):1801–1810. https://doi.org/10.1016/j.bpj.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28(24):3785–3798. https://doi.org/10.1038/emboj.2009.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batra J, Xu K, Qin S, Zhou HX (2009) Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys J 97(3):906–911. https://doi.org/10.1016/j.bpj.2009.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almassalha LM, Bauer GM, Chandler JE, Gladstein S, Cherkezyan L, Stypula-Cyrus Y, Weinberg S, Zhang D, Thusgaard Ruhoff P, Roy HK, Subramanian H, Chandel NS, Szleifer I, Backman V (2016) Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proc Natl Acad Sci U S A 113(42):E6372–E6381. https://doi.org/10.1073/pnas.1608198113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cherkezyan L, Zhang D, Subramanian H, Capoglu I, Taflove A, Backman V (2017) Review of interferometric spectroscopy of scattered light for the quantification of subdiffractional structure of biomaterials. J Biomed Opt 22(3):030901–030901. https://doi.org/10.1117/1.JBO.22.3.030901

    Article  Google Scholar 

  7. Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40(18):8783–8792. https://doi.org/10.1093/nar/gks586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lebedev DV, Filatov MV, Kuklin AI, Islamov AK, Kentzinger E, Pantina R, Toperverg BP, Isaev-Ivanov VV (2005) Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties. FEBS Lett 579(6):1465–1468. https://doi.org/10.1016/j.febslet.2005.01.052

    Article  CAS  PubMed  Google Scholar 

  9. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu W, Radosevich AJ, Eshein A, Nguyen T-Q, Yi J, Cherkezyan L, Roy HK, Szleifer I, Backman V (2016) Using electron microscopy to calculate optical properties of biological samples. Biomed Opt Express 7(11):4749–4762. https://doi.org/10.1364/BOE.7.004749

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White C, Dela Cruz M, Wali R, Goldberg M, Bianchi L, Roy H, Backman V (2014) Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study. BMC Cancer 14(1):189

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dong B, Almassalha LM, Stypula-Cyrus Y, Urban BE, Chandler JE, Nguyen T-Q, Sun C, Zhang HF, Backman V (2016) Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 113(35):9716–9721. https://doi.org/10.1073/pnas.1602202113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu C-t, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529(7586):418–422. https://doi.org/10.1038/nature16496. http://www.nature.com/nature/journal/v529/n7586/abs/nature16496.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosom Res 19(1):37–51. https://doi.org/10.1007/s10577-010-9177-0

    Article  CAS  Google Scholar 

  15. Almassalha LM, Tiwari A, Ruhoff PT, Stypula-Cyrus Y, Cherkezyan L, Matsuda H, Dela Cruz MA, Chandler JE, White C, Maneval C, Subramanian H, Szleifer I, Roy HK, Backman V (2017) The global relationship between chromatin physical topology, fractal structure, and gene expression. Sci Rep 7:41061. https://doi.org/10.1038/srep41061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687

    Article  CAS  PubMed  Google Scholar 

  17. Robbins SL, Kumar V, Cotran RS (2010) Robbins and Cotran pathologic basis of disease. Saunders/Elsevier, Philadelphia, PA

    Google Scholar 

  18. Bedin V, Adam RL, de Sa BC, Landman G, Metze K (2010) Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10:260. https://doi.org/10.1186/1471-2407-10-260

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tambasco M, Costello BM, Kouznetsov A, Yau A, Magliocco AM (2009) Quantifying the architectural complexity of microscopic images of histology specimens. Micron (Oxford) 40(4):486–494. https://doi.org/10.1016/j.micron.2008.12.004

    Article  CAS  Google Scholar 

  20. Tambasco M, Magliocco AM (2008) Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol 39(5):740–746. https://doi.org/10.1016/j.humpath.2007.10.001

    Article  PubMed  Google Scholar 

  21. Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13(7):719–735. https://doi.org/10.1586/14737159.2013.828889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Subramanian H, Roy HK, Pradhan P, Goldberg MJ, Muldoon J, Brand RE, Sturgis C, Hensing T, Ray D, Bogojevic A, Mohammed J, Chang JS, Backman V (2009) Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy. Cancer Res 69(13):5357–5363. https://doi.org/10.1158/0008-5472.can-08-3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Damania D, Roy HK, Subramanian H, Weinberg DS, Rex DK, Goldberg MJ, Muldoon J, Cherkezyan L, Zhu Y, Bianchi LK, Shah D, Pradhan P, Borkar M, Lynch H, Backman V (2012) Nanocytology of rectal colonocytes to assess risk of colon cancer based on field cancerization. Cancer Res 72:2720–2727. https://doi.org/10.1158/0008-5472.CAN-11-3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konda VJ, Cherkezyan L, Subramanian L, Becker V, Goldberg MJ, Chennat JS, Karl LR, Waxman I, Roy LK, Backman V (2011) Nanoscale differences assessed by partial wave spectroscopy in the field of esophageal cancer and Barrett's esophagus. Gastroenterology 140(5):S752–S752

    Google Scholar 

  25. Roy HK, Brendler CB, Subramanian H, Zhang D, Maneval C, Chandler J, Bowen L, Kaul KL, Helfand BT, Wang CH, Quinn M, Petkewicz J, Paterakos M, Backman V (2015) Nanocytological field carcinogenesis detection to mitigate overdiagnosis of prostate cancer: a proof of concept study. PLoS One 10(2):e0115999. https://doi.org/10.1371/journal.pone.0115999

    Article  PubMed  PubMed Central  Google Scholar 

  26. Damania D, Roy HK, Kunte D, Hurteau JA, Subramanian H, Cherkezyan L, Krosnjar N, Shah M, Backman V (2013) Insights into the field carcinogenesis of ovarian cancer based on the nanocytology of endocervical and endometrial epithelial cells. Int J Cancer 133(5):1143–1152. https://doi.org/10.1002/ijc.28122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Subramanian H, Pradhan P, Liu Y, Capoglu IR, Rogers JD, Roy HK, Brand RE, Backman V (2009) Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. Opt Lett 34(4):518–520. https://doi.org/10.1364/OL.34.000518

    Article  PubMed  PubMed Central  Google Scholar 

  28. Almassalha LM, Bauer GM, Chandler JE, Gladstein S, Szleifer I, Roy HK, Backman V (2016) The greater genomic landscape: the heterogeneous evolution of cancer. Cancer Res 76:5605–5609. https://doi.org/10.1158/0008-5472.can-16-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cherkezyan L, Capoglu I, Subramanian H, Rogers JD, Damania D, Taflove A, Backman V (2013) Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations. Phys Rev Lett 111(3):033903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chandler JE, Stypula-Cyrus Y, Almassalha L, Bauer G, Bowen L, Subramanian H, Szleifer I, Backman V (2016) Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy. J Biophotonics 10:377–384. https://doi.org/10.1002/jbio.201500298

    Article  PubMed  Google Scholar 

  31. Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845(1):84–89. https://doi.org/10.1016/j.bbcan.2013.12.002

    CAS  PubMed  Google Scholar 

  32. Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33. https://doi.org/10.1038/nrc.2015.2

    Article  CAS  PubMed  Google Scholar 

  33. Schwarz T (1998) UV light affects cell membrane and cytoplasmic targets. J Photochem Photobiol B 44(2):91–96. https://doi.org/10.1016/S1011-1344(98)00126-2

    Article  CAS  PubMed  Google Scholar 

  34. Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC (2000) Role of mitochondria in ultraviolet-induced oxidative stress. J Cell Biochem 80(2):216–222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Backman .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

This video shows the dynamic nature of chromatin structure by continuously imaging live MDA-MB-231 cells over the course of 30 min (AVI 76806 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gladstein, S. et al. (2018). Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy. In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics