Skip to main content

FACS Isolation of Viable Cells in Different Cell Cycle Stages from Asynchronous Culture for RNA Sequencing

  • Protocol
  • First Online:
Cellular Heterogeneity

Abstract

Recently developed high-throughput analytical techniques (e.g., protein mass spectrometry and nucleic acid sequencing) allow unprecedentedly sensitive, in-depth studies in molecular biology of cell proliferation, differentiation, aging, and death. However, the initial population of asynchronous cultured cells is highly heterogeneous by cell cycle stage, which complicates immediate analysis of some biological processes. Widely used cell synchronization protocols are time-consuming and can affect the finely tuned biochemical pathways leading to biased results. Besides, certain cell lines cannot be effectively synchronized. The current methodological challenge is thus to provide an effective tool for cell cycle phase-based population enrichment compatible with other required experimental procedures. Here, we describe an optimized approach to live cell FACS based on Hoechst 33342 cell-permeable DNA-binding fluorochrome staining. The proposed protocol is fast compared to traditional synchronization methods and yields reasonably pure fractions of viable cells for further experimental studies including high-throughput RNA-seq analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149. https://doi.org/10.1046/j.1365-2184.2003.00266.x

    Article  CAS  PubMed  Google Scholar 

  2. Zhong W (2008) Timing cell-fate determination during asymmetric cell divisions. Curr Opin Neurobiol 18(5):472–478. https://doi.org/10.1016/j.conb.2008.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135(1):161–173. https://doi.org/10.1016/j.cell.2008.07.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dey-Guha I, Wolfer A, Yeh AC, G Albeck J, Darp R, Leon E, Wulfkuhle J, Petricoin EF 3rd, Wittner BS, Ramaswamy S (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108(31):12845–12850. https://doi.org/10.1073/pnas.1109632108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B (2014) Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (Fission Yeast). Mol Cell Proteomics 13(8):1925–1936. https://doi.org/10.1074/mcp.M113.035824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hsieh SY, Zhuang FH, Wu YT, Chen JK, Lee YL (2008) Profiling the proteome dynamics during the cell cycle of human hepatoma cells. Proteomics 8(14):2872–2884. https://doi.org/10.1002/pmic.200800196

    Article  CAS  PubMed  Google Scholar 

  7. Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151(3):671–683. https://doi.org/10.1016/j.cell.2012.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominguez D, Tsai Y-H, Gomez N, Jha DK, Davis I, Wang Z (2016) A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res 26:946–962. https://doi.org/10.1038/cr.2016.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koval AP, Gogolevskaya IK, Tatosyan KA, Kramerov DA (2015) A 5′-3′ terminal stem in small non-coding RNAs extends their lifetime. Gene 555(2):464–468. https://doi.org/10.1016/j.gene.2014.10.061

    Article  CAS  PubMed  Google Scholar 

  11. Tatosyan KA, Kramerov DA (2016) Heat shock increases lifetime of a small RNA and induces its accumulation in cells. Gene 587(1):33–41. https://doi.org/10.1016/j.gene.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  12. McDavid A, Finak G, Gottardo R (2016) The contribution of cell cycle to heterogeneity in single-cell RNA-seq data. Nat Biotechnol 34:591–593. https://doi.org/10.1038/nbt.3498

    Article  CAS  PubMed  Google Scholar 

  13. Velichko AK, Petrova NV, Razin SV, Kantidze OL (2017) Comparative analysis of the synchronization methods of normal and transformed human cells. Mol Biol 51:130–135. https://doi.org/10.1134/S0026893316060200

    Article  CAS  Google Scholar 

  14. Sonoda E (2006) Synchronization of cells. Subcell Biochem 40:415–418

    PubMed  Google Scholar 

  15. Schorl C, Sedivy JM (2007) Analysis of cell cycle phases and progression in cultured mammalian cells. Methods 41(2):143–150. https://doi.org/10.1016/j.ymeth.2006.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma HT, Poon RY (2017) Synchronization of HeLa cells. Methods Mol Biol 1524:189–201. https://doi.org/10.1007/978-1-4939-6603-5_12

    Article  PubMed  Google Scholar 

  17. Wanda PE (1996) Immunochemical detection of cell cycle synchronization in a human erythroid cell line, K562. Methods Cell Sci 18:143–148. https://doi.org/10.1007/BF00122165

    Article  Google Scholar 

  18. Urbani L, Sherwood SW, Schimke RT (1995) Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp Cell Res 219(1):159–168. https://doi.org/10.1006/excr.1995.1216

    Article  CAS  PubMed  Google Scholar 

  19. Li CJ (2017) Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate. Methods Mol Biol 1524:149–159. https://doi.org/10.1007/978-1-4939-6603-5_9

    Article  PubMed  Google Scholar 

  20. Helmstetter CE (2015) A ten-year search for synchronous cells: obstacles, solutions, and practical applications. Front Microbiol 6:238. https://doi.org/10.3389/fmicb.2015.00238

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shaw J, Payer K, Son S, Grover WH, Manalis SR (2012) A microfluidic “baby machine” for cell synchronization. Lab Chip 12(15):2656–2663. https://doi.org/10.1039/c2lc40277g

    Article  CAS  PubMed  Google Scholar 

  22. Banfalvi G (2017) Synchronization of mammalian cells and nuclei by centrifugal elutriation. Methods Mol Biol 1524:31–52. https://doi.org/10.1007/978-1-4939-6603-5_2

    Article  PubMed  Google Scholar 

  23. Ly T, Ahmad Y, Shlien A, Soroka D, Mills A, Emanuele MJ, Stratton MR, Lamond AI (2014) A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife 3:e01630. https://doi.org/10.7554/eLife.01630

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donnell EA, Ernst DN, Hingorani R (2013) Multiparameter flow cytometry: advances in high resolution analysis. Immune Netw 13(2):43–54. https://doi.org/10.4110/in.2013.13.2.43

    Article  PubMed  PubMed Central  Google Scholar 

  25. Darzynkiewicz Z, Crissman H, Jacobberger JW (2004) Cytometry of the cell cycle: cycling through history. Cytometry A 58(1):21–32. https://doi.org/10.1002/cyto.a.20003

    Article  PubMed  Google Scholar 

  26. Kim KH, Sederstrom JM (2015) Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol 111:28.6.1–28.6.11. https://doi.org/10.1002/0471142727.mb2806s111

    Article  Google Scholar 

  27. Borisov VI, Korolkova OY, Kozhevnikov VS (2014) Application of flow-FISH for dynamic measurement of telomere length in cell division. Curr Protoc Cytom 69:8.14.1–8.14.10. https://doi.org/10.1002/0471142956.cy0814s69

    Article  Google Scholar 

  28. Yu H, Ernst L, Wagner M, Waggoner A (1992) Sensitive detection of RNAs in single cells by flow cytometry. Nucleic Acids Res 20(1):83–88. https://doi.org/10.1093/nar/20.1.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yehuda Y, Blumenfeld B, Lehmann D, Simon I (2017) Genome-wide determination of mammalian replication timing by DNA content measurement. J Vis Exp (119):e55157. doi:https://doi.org/10.3791/55157.

  30. Grolmusz VK, Tóth EA, Baghy K, Likó I, Darvasi O, Kovalszky I, Matkó J, Rácz K, Patócs A (2016) Fluorescence activated cell sorting followed by small RNA sequencing reveals stable microRNA expression during cell cycle progression. BMC Genomics 17:412. https://doi.org/10.1186/s12864-016-2747-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Juan G, Hernando E, Cordon-Cardo C (2002) Separation of live cells in different phases of the cell cycle for gene expression analysis. Cytometry 49(4):170–175. https://doi.org/10.1002/cyto.10173

    Article  PubMed  Google Scholar 

  32. Siemann DW, Keng PC (1986) Cell cycle specific toxicity of the Hoechst 33342 stain in untreated or irradiated murine tumor cells. Cancer Res 46(7):3556–3559

    CAS  PubMed  Google Scholar 

  33. Reno F, Luchetti F, Vitale M, Gregorini A, Valentini M, Papa S (1996) Sorting of cells from different cell cycle phases using surface antigen expression. Methods Cell Sci 18(2):93–98. https://doi.org/10.1007/BF00122159

    Article  Google Scholar 

  34. Zielke N, Edgar BA (2015) FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev Dev Biol 4:469–487. https://doi.org/10.1002/wdev.189

    Article  CAS  PubMed  Google Scholar 

  35. Wang D, Lu P, Liu Y, Chen L, Zhang R, Sui W, Dumitru AG, Chen X, Wen F, Ouyang HW, Ji J (2016) Isolation of live premature senescent cells using FUCCI technology. Sci Rep 6:30705. https://doi.org/10.1038/srep30705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uzbekov RE (2004) Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochem Mosc 69(5):485–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Moscow State University Program of Development and by the Russian Science Foundation (grant #14-14-00088, sequencing and data analysis; grant #14-50-00029, optimization of RNA extraction and library preparation). Daria M. Potashnikova and Sergey A. Golyshev have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Vorobjev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Potashnikova, D.M. et al. (2018). FACS Isolation of Viable Cells in Different Cell Cycle Stages from Asynchronous Culture for RNA Sequencing. In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics