Skip to main content

Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida

  • Protocol
  • First Online:
Cellular Heterogeneity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1745))

Abstract

The soil bacterium Pseudomonas putida is rapidly becoming a platform of choice for applications that require a microbial host highly resistant to different types of stresses and elevated rates of reducing power regeneration. P. putida is capable of growing in a wide variety of carbon sources that range from simple sugars to complex substrates such as aromatic compounds. Interestingly, the growth of the reference strain KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. This macroscopic phenomenon has been shown to be connected with the stochastic expression of the glp genes, which encode the enzymes needed for glycerol processing. In this protocol, we propose a general procedure to examine bacterial growth in small-scale cultures while monitoring the metabolic activity of individual cells. Assessing the metabolic capacity of single bacteria by means of fluorescence microscopy and flow cytometry, in combination with the analysis of the temporal takeoff of growth in single-cell cultures, is a simple and easy-to-implement approach. It can help to understand the link between macroscopic phenotypes (e.g., microbial growth in batch cultures) and stochastic phenomena at the genetic level. The implementation of these methodologies revealed that the adoption of a glycerol-metabolizing regime by P. putida KT2440 is not the result of a gradual change in the whole population, but it rather reflects a time-dependent bimodal switch between metabolically inactive (i.e., not growing) to fully active (i.e., growing) bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danchin A (2012) Scaling up synthetic biology: do not forget the chassis. FEBS Lett 586:2129–2137. https://doi.org/10.1016/j.febslet.2011.12.024

    Article  CAS  PubMed  Google Scholar 

  2. Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, García-Martín H (2016) Synthetic and systems biology for microbial production of commodity chemicals. Syst Biol Appl 2:16009. https://doi.org/10.1038/npjsba.2016.9

    Article  Google Scholar 

  3. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197. https://doi.org/10.1016/j.cell.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  4. Godoy MS, Nikel PI, Cabrera Gomez JG, Pettinari MJ (2015) The CreC regulator of Escherichia coli, a new target for metabolic manipulations. Appl Environ Microbiol 82:244–254. https://doi.org/10.1128/AEM.02984-15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim J, Salvador M, Saunders E, González J, Avignone-Rossa C, Jiménez JI (2016) Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis. Essays Biochem 60:303–313. https://doi.org/10.1042/EBC20160015

    Article  PubMed  PubMed Central  Google Scholar 

  6. Regenhardt D, Heuer H, Heim S, Fernández DU, Strömpl C, Moore ER, Timmis KN (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4:912–915. https://doi.org/10.1046/j.1462-2920.2002.00368.x

    Article  CAS  PubMed  Google Scholar 

  7. Poblete-Castro I, Borrero de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C (2017) Host organism: Pseudomonas putida. In: Wittmann C, Liao JC (eds) Industrial biotechnology: microorganisms. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527807796.ch8

    Google Scholar 

  8. Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290:25920–25932. https://doi.org/10.1074/jbc.M115.687749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nikel PI, de Lorenzo V (2013) Implantation of unmarked regulatory and metabolic modules in gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 163:143–154. https://doi.org/10.1016/j.jbiotec.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  10. Nikel PI, Chavarría M (2016) Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria. In: McGenity TJ, Timmis KN, Nogales-Fernández B (eds) Hydrocarbon and lipid microbiology protocols–synthetic and systems biology–tools. Humana Press, Heidelberg, Germany, pp 39–70. https://doi.org/10.1007/8623_2015_84

    Google Scholar 

  11. Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190. https://doi.org/10.1111/j.1742-4658.2008.06648.x

    Article  CAS  PubMed  Google Scholar 

  12. Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605. https://doi.org/10.1128/AEM.05588-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785. https://doi.org/10.1111/1462-2920.12069

    Article  PubMed  Google Scholar 

  14. Nikel PI (2012) A brief guide to Pseudomonas putida as a microbial cell factory. BioEssays, Available on line at: http://goo.gl/DXF1y

  15. Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29. https://doi.org/10.1016/j.cbpa.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  16. Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. https://doi.org/10.1038/nrmicro3253

    Article  CAS  PubMed  Google Scholar 

  17. Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. https://doi.org/10.1016/j.ymben.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Factories 14:23. https://doi.org/10.1186/s12934-015-0207-7

    Article  Google Scholar 

  19. Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13:159. https://doi.org/10.1186/s12934-014-0159-3.

    Article  Google Scholar 

  20. Martínez-García E, Nikel PI, Chavarría M, de Lorenzo V (2014) The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ Microbiol 16:291–303. https://doi.org/10.1111/1462-2920.12309

    Article  PubMed  Google Scholar 

  21. Jiménez JI, Miñambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841. https://doi.org/10.1046/j.1462-2920.2002.00370.x

    Article  PubMed  Google Scholar 

  22. Belda E, van Heck RGA, López-Sánchez MJ, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424. https://doi.org/10.1111/1462-2920.13230

    Article  CAS  PubMed  Google Scholar 

  23. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

    Article  CAS  PubMed  Google Scholar 

  24. Nikel PI, Giordano AM, de Almeida A, Godoy MS, Pettinari MJ (2010) Elimination of D-lactate synthesis increases poly(3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microbiol 76:7400–7406. https://doi.org/10.1128/AEM.02067-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nikel PI, Ramirez MC, Pettinari MJ, Méndez BS, Galvagno MA (2010) Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides. J Appl Microbiol 109:492–504. https://doi.org/10.1111/j.1365-2672.2010.04668.x.

    CAS  PubMed  Google Scholar 

  26. Mattam AJ, Clomburg JM, González R, Yazdani SS (2013) Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett 35:831–842. https://doi.org/10.1007/s10529-013-1240-4

    Article  CAS  PubMed  Google Scholar 

  27. Yazdani SS, González R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219. https://doi.org/10.1016/j.copbio.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Oliveros JC, Nikel PI, de Lorenzo V, Silva-Rocha R (2013) Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ Microbiol Rep 5:883–891. https://doi.org/10.1111/1758-2229.12090

    Article  CAS  PubMed  Google Scholar 

  29. Nikel PI, Kim J, de Lorenzo V (2014) Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 16:239–254. https://doi.org/10.1111/1462-2920.12224

    Article  CAS  PubMed  Google Scholar 

  30. Nikel PI, Romero-Campero FJ, Zeidman JA, Goñi-Moreno A, de Lorenzo V (2015) The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 6:e00340-00315. https://doi.org/10.1128/mBio.00340-15

  31. Casadesús J, Low DA (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935. https://doi.org/10.1074/jbc.R113.472274

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572. https://doi.org/10.1111/j.1365-2958.2006.05249.x

    Article  CAS  PubMed  Google Scholar 

  33. Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559. https://doi.org/10.1128/MMBR.68.3.538-559.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212. https://doi.org/10.1016/j.mib.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  35. Freed NE, Silander OK, Stecher B, Böhm A, Hardt WD, Ackermann M (2008) A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet 4:e1000307. https://doi.org/10.1371/journal.pgen.1000307.g003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mills E, Avraham R (2017) Breaking the population barrier by single cell analysis: one host against one pathogen. Curr Opin Microbiol 36:69–75. https://doi.org/10.1016/j.mib.2017.01.005

    Article  PubMed  Google Scholar 

  37. Ackermann M (2013) Microbial individuality in the natural environment. ISME J 7:465–467. https://doi.org/10.1038/ismej.2012.131

    Article  CAS  PubMed  Google Scholar 

  38. Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2014) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16:628–642. https://doi.org/10.1111/1462-2920.12360

    Article  CAS  PubMed  Google Scholar 

  39. Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210. https://doi.org/10.1146/annurev.micro.62.081307.163002

    Article  CAS  PubMed  Google Scholar 

  40. Arnoldini M, Vizcarra IA, Peña-Miller R, Stocker N, Diard M, Vogel V, Beardmore RE, Hardt WD, Ackermann M (2014) Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol 12:e1001928. https://doi.org/10.1371/journal.pbio.1001928

    Article  PubMed  PubMed Central  Google Scholar 

  41. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625. https://doi.org/10.1126/science.1099390

    Article  CAS  PubMed  Google Scholar 

  42. Dalgaard P, Koutsoumanis K (2001) Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J Microbiol Methods 43:183–196. https://doi.org/10.1016/S0167-7012(00)00219-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to F. J. Romero-Campero (University of Seville, Seville, Spain) for his valuable help and suggestions in data analysis. The work described in this chapter was supported by the CAMBIOS Project of the Spanish Ministry of Economy and Competitiveness (RTC-2014-1777-3), EVOPROG (FP7-ICT-610730), ARISYS (ERC-2012-ADG-322797), and EmPowerPutida (EU-H2020-BIOTEC-2014-2015-6335536) Contracts of the European Union, and the PROMPT Project of the Autonomous Community of Madrid (CAM-S2010/BMD-2414) to V.D.L. P.I.N. gratefully acknowledges the support provided by the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikel, P.I., de Lorenzo, V. (2018). Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida . In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics