Advertisement

Characterizing Cell Heterogeneity Using PCR Fingerprinting of Surface Multigene Families in Protozoan Parasites

  • Víctor Seco-Hidalgo
  • Antonio Osuna
  • Luis Miguel de Pablos
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)

Abstract

Parasites counteract the action of the immune system and other environmental pressures by modulating and changing the composition of their cell surfaces. Surface multigene protein families are defined not only by highly variable regions in length and/or sequence exposed to the outer space but also by conserved sequences codifying for the signal peptide, hydrophobic C-terminal regions necessary for GPI modifications, as well as conserved UTR regions for mRNA regulation. The method here presented exploits these conserved signatures for characterizing variations in the mRNA expression of clonal cell populations of protozoan parasites using a combination of nested PCR amplification and capillary electrophoresis. With this workflow, in silico gels from isolated cell clones can be generated, thus providing an excellent tool for analyzing cellular heterogeneity in protozoan parasites.

Keywords

Parasite Cell heterogeneity Gene expression RNA Trypanosoma Plasmodium Leishmania 

References

  1. 1.
    Seco-Hidalgo V, Osuna A, Pablos LM (2015) To bet or not to bet: deciphering cell to cell variation in protozoan infections. Trends Parasitol 31(8):350–356.  https://doi.org/10.1016/j.pt.2015.05.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Blythe JE, Surentheran T, Preiser PR (2004) STEVOR—a multifunctional protein? Mol Biochem Parasitol 134:11–15CrossRefPubMedGoogle Scholar
  3. 3.
    Niang M, Yan Yam X, Preiser PR (2009) The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog 5:e1000307CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rovira-Graells N, Gupta AP, Planet E et al (2012) Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 22:925–938CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Seco-Hidalgo V, De Pablos LM, Osuna A (2015) Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations. Open Biol 5:150190.  https://doi.org/10.1098/rsob.150190 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kyes SA, Kraemer SM, Smith JD (2007) Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family. Eukaryot Cell 6:1511–1520CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ferreri LM, Brayton KA, Sondgeroth KS et al (2012) Expression and strain variation of the novel “small open reading frame” (smorf) multigene family in Babesia bovis. Int J Parasitol 42:131–138CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schmuckli-Maurer J, Casanova C, Schmied S et al (2009) Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family. PLoS One 4:e4839CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Freitas LM, dos Santos SL, Rodrigues-Luiz GF et al (2011) Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 6:e25914CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aguero F, Campo V, Cremona L et al (2002) Gene discovery in the freshwater fish parasite Trypanosoma carassii: identification of trans-Sialidase-like and mucin-like genes. Infect Immun 70:7140–7144CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ubeda JM, Raymond F, Mukherjee A et al (2014) Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania. PLoS Biol 12:e1001868CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sterkers Y, Crobu L, Lachaud L et al (2014) Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol 30:429–435CrossRefPubMedGoogle Scholar
  13. 13.
    Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO et al (2015) Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 16:499.  https://doi.org/10.1186/s12864-015-1680-4 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartholomeu DC, Cerqueira GC, Leao ACA et al (2009) Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res 37:3407–3417CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    dos Santos SL, Freitas LM, Lobo FP et al (2012) The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Negl Trop Dis 6:e1779.  https://doi.org/10.1371/journal.pntd.0001779 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schuler GD (1997) Sequence mapping by electronic PCR. Genome Res 7:541–550CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schulz D, Mugnier MR, Boothroyd CE et al (2016) Detection of Trypanosoma brucei variant surface glycoprotein switching by magnetic activated cell sorting and flow cytometry. J Vis Exp 116.  https://doi.org/10.3791/54715
  19. 19.
    Boissière A, Arnathau C, Duperray C et al (2012) Isolation of Plasmodium falciparum by flow-cytometry: implications for single-trophozoite genotyping and parasite DNA purification for whole-genome high-throughput sequencing of archival samples. Malar J 11:163.  https://doi.org/10.1186/1475-2875-11-163 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nair S, Nkhoma SC, Serre D et al (2014) Single-cell genomics for dissection of complex malaria infections. Genome Res 24:1028–1038CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Akagi T, Sasai K, Hanafusa H (2003) Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci U S A 100:13567–13572CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Geislinger TM, Chan S, Moll K et al (2014) Label-free microfluidic enrichment of ring-stage Plasmodium falciparum-infected red blood cells using non-inertial hydrodynamic lift. Malar J 13:375.  https://doi.org/10.1186/1475-2875-13-375 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hochstetter A, Stellamanns E, Deshpande S et al (2015) Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab Chip 15(8):1961–1968.  https://doi.org/10.1039/c5lc00124b CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Víctor Seco-Hidalgo
    • 1
  • Antonio Osuna
    • 2
  • Luis Miguel de Pablos
    • 2
  1. 1.Escuela de MedicinaUniversidad Internacional de EcuadorQuitoEcuador
  2. 2.Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183Universidad de GranadaGranadaSpain

Personalised recommendations