Advertisement

Laser Tweezers Raman Microspectroscopy of Single Cells and Biological Particles

  • Maria Navas-Moreno
  • James W. Chan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)

Abstract

Laser tweezers Raman spectroscopy (LTRS) is a variation of micro-Raman spectroscopy that is used to analyze single cells and biological particles suspended in an aqueous environment. The Raman spectrum of the cell/particle reflects its intrinsic biochemical composition and molecular structures. The technique utilizes a laser trap generated by a tightly focused Gaussian laser beam to physically manipulate individual cells and immobilize them in the laser focal volume. The same laser that is used for optical trapping also simultaneously excites Raman signals from the trapped cell, which are detected using a spectrometer and a confocal detection setup. LTRS offers unique capabilities not commonly found in other optical cytometry methods, such as label-free chemical analysis, multi-parametric chemical detection with a single excitation laser, and a non-photobleaching signal that can be used to quantitate and monitor dynamic chemical changes. This chapter provides guidelines on the design of a single beam LTRS microscope and methods for building and aligning the system. Operating procedures for trapping particles and acquiring spectra and a summary of data analysis techniques are provided.

Key words

Raman scattering Optical tweezers Laser trapping Single cells Vibrational spectroscopy Laser Cytometry 

References

  1. 1.
    Awasthi S, Izu LT, Mao Z, Jian Z, Landas T, Lerner A, Shimkunas R, Woldeyesus R, Bossuyt J, Wood B, Chen YJ, Matthews DL, Lieu DK, Chiamvimonvat N, Lam KS, Chen-Izu Y, Chan JW (2016) Multimodal SHG-2PF imaging of microdomain Ca2+-contraction coupling in live cardiac myocytes. Circ Res 118(2):e19–e28.  https://doi.org/10.1161/CIRCRESAHA.115.307919 CrossRefPubMedGoogle Scholar
  2. 2.
    Awasthi S, Matthews DL, Li RA, Chiamvimonvat N, Lieu DK, Chan JW (2012) Label-free identification and characterization of human pluripotent stem cell-derived cardiomyocytes using second harmonic generation (SHG) microscopy. J Biophotonics 5(1):57–66.  https://doi.org/10.1002/jbio.201100077 CrossRefPubMedGoogle Scholar
  3. 3.
    Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5):2811–2825.  https://doi.org/10.1016/S0006-3495(02)75621-X CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Squirrell JM, Fong JJ, Ariza CA, Mael A, Meyer K, Shevde NK, Roopra A, Lyons GE, Kamp TJ, Eliceiri KW, Ogle BM (2012) Endogenous fluorescence signatures in living pluripotent stem cells change with loss of potency. PLoS One 7(8):e43708.  https://doi.org/10.1371/journal.pone.0043708 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chan JW (2013) Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J Biophotonics 6(1):36–48.  https://doi.org/10.1002/jbio.201200143 CrossRefPubMedGoogle Scholar
  6. 6.
    Kong LB, Chan J (2014) A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array. Anal Chem 86(13):6604–6609.  https://doi.org/10.1021/ac5012188 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu R, Taylor DS, Matthews DL, Chan JW (2010) Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy. Appl Spectrosc 64(11):1308–1310.  https://doi.org/10.1366/000370210793334972 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang PF, Kong LB, Wang GW, Setlow P, Li YQ (2010) Combination of Raman tweezers and quantitative differential interference contrast microscopy for measurement of dynamics and heterogeneity during the germination of individual bacterial spores. J Biomed Opt 15(5):Artn 056010.  https://doi.org/10.1117/1.3494567 CrossRefGoogle Scholar
  9. 9.
    Moritz TJ, Brunberg JA, Krol DM, Wachsmann-Hogiu S, Lane SM, Chan JW (2010) Characterisation of FXTAS related isolated intranuclear protein inclusions using laser tweezers Raman spectroscopy. J Raman Spectrosc 41(1):33–39.  https://doi.org/10.1002/jrs.2436 CrossRefGoogle Scholar
  10. 10.
    Creely CM, Singh GP, Petrov D (2005) Dual wavelength optical tweezers for confocal Raman spectroscopy. Optics Commun 245(1–6):465–470.  https://doi.org/10.1016/j.optcom.2004.10.011 CrossRefGoogle Scholar
  11. 11.
    Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal Chem 76(3):599–603.  https://doi.org/10.1021/ac0350155 CrossRefPubMedGoogle Scholar
  12. 12.
    Chen D, Huang SS, Li YQ (2006) Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal Chem 78(19):6936–6941.  https://doi.org/10.1021/ac061090e CrossRefPubMedGoogle Scholar
  13. 13.
    Kong L, Zhang P, Wang G, Yu J, Setlow P, Li YQ (2011) Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat Protoc 6(5):625–639.  https://doi.org/10.1038/nprot.2011.307 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang S, Shen A, Setlow P, Li YQ (2015) Characterization of the dynamic germination of individual clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197(14):2361–2373.  https://doi.org/10.1128/JB.00200-15 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moritz TJ, Polage CR, Taylor DS, Krol DM, Lane SM, Chan JW (2010) Evaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers. J Clin Microbiol 48(11):4287–4290.  https://doi.org/10.1128/JCM.01565-10 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Moritz TJ, Taylor DS, Polage CR, Krol DM, Lane SM, Chan JW (2010) Effect of cefazolin treatment on the nonresonant Raman signatures of the metabolic state of individual Escherichia coli cells. Anal Chem 82(7):2703–2710.  https://doi.org/10.1021/ac902351a CrossRefPubMedGoogle Scholar
  17. 17.
    Chan JW, Motton D, Rutledge JC, Keim NL, Huser T (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Anal Chem 77(18):5870–5876.  https://doi.org/10.1021/ac050692f CrossRefPubMedGoogle Scholar
  18. 18.
    Smith ZJ, Lee C, Rojalin T, Carney RP, Hazari S, Knudson A, Lam K, Saari H, Ibanez EL, Viitala T, Laaksonen T, Yliperttula M, Wachsmann-Hogiu S (2015) Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles 4:28533.  https://doi.org/10.3402/jev.v4.28533 CrossRefPubMedGoogle Scholar
  19. 19.
    Fore S, Chan J, Taylor D, Huser T (2011) Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus. J Opt 13(4):44021.  https://doi.org/10.1088/2040-8978/13/4/044021 CrossRefPubMedGoogle Scholar
  20. 20.
    Chan JW, Taylor DS, Lane SM, Zwerdling T, Tuscano J, Huser T (2008) Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal Chem 80(6):2180–2187.  https://doi.org/10.1021/ac7022348 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu R, Mao Z, Matthews DL, Li CS, Chan JW, Satake N (2013) Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease. Exp Hematol 41(7):656–661. e651.  https://doi.org/10.1016/j.exphem.2013.02.012 CrossRefPubMedGoogle Scholar
  22. 22.
    Efremov EV, Ariese F, Gooijer C (2008) Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 606(2):119–134.  https://doi.org/10.1016/j.aca.2007.11.006 CrossRefPubMedGoogle Scholar
  23. 23.
    Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11(8):1484–1490.  https://doi.org/10.1039/C0LC00612B CrossRefPubMedGoogle Scholar
  24. 24.
    Li Z, Deen M, Kumar S, Selvaganapathy P (2014) Raman spectroscopy for in-line water quality monitoring—instrumentation and potential. Sensors 14(9):17275CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kramida A, Ralchenko YU, Reader J, NIST ASD Team (2016) Atomic spectra database (version 5.4) Online edition. National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/PhysRefData/ASD/lines_form.html Google Scholar
  26. 26.
    Managò S, Valente C, Mirabelli P, Circolo D, Basile F, Corda D, De Luca AC (2016) A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Sci Rep 6:24821.  https://doi.org/10.1038/srep24821. http://www.nature.com/articles/srep24821#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xie C, Chen D, Y-q L (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt Lett 30(14):1800–1802.  https://doi.org/10.1364/OL.30.001800 CrossRefPubMedGoogle Scholar
  28. 28.
    Peng J, Peng S, Jiang A, Wei J, Li C, Tan J (2010) Asymmetric least squares for multiple spectra baseline correction. Anal Chim Acta 683(1):63–68.  https://doi.org/10.1016/j.aca.2010.08.033 CrossRefPubMedGoogle Scholar
  29. 29.
    Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57(11):1363–1367.  https://doi.org/10.1366/000370203322554518 CrossRefPubMedGoogle Scholar
  30. 30.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639.  https://doi.org/10.1021/ac60214a047 CrossRefGoogle Scholar
  31. 31.
    Gautam R, Vanga S, Ariese F, Umapathy S (2015) Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techn Instrument 2(1):8.  https://doi.org/10.1140/epjti/s40485-015-0018-6 CrossRefGoogle Scholar
  32. 32.
    Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777CrossRefGoogle Scholar
  33. 33.
    Windig W, Shaver J, Bro R, Loopy MSC (2008) A simple way to improve multiplicative scatter correction. Appl Spectrosc 62(10):1153–1159.  https://doi.org/10.1366/000370208786049097 CrossRefPubMedGoogle Scholar
  34. 34.
    Long DA (2004) Handbook of Raman spectroscopy. From the research laboratory to the process line. Eds. Ian R. Lewis and Howell G. M. Edwards. Marcel Dekker, N-Y and Basel, 2001. J Raman Spectrosc 35(1):91–91.  https://doi.org/10.1002/jrs.1117 CrossRefGoogle Scholar
  35. 35.
    Dörfer T, Schumacher W, Tarcea N, Schmitt M, Popp J (2010) Quantitative mineral analysis using Raman spectroscopy and chemometric techniques. J Raman Spectrosc 41(6):684–689.  https://doi.org/10.1002/jrs.2503 CrossRefGoogle Scholar
  36. 36.
    Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814.  https://doi.org/10.1073/pnas.1009043108 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Krafft C, Dochow S, Beleites C, Popp J (2014) Cell identification using Raman spectroscopy in combination with optical trapping and microfluidics. In: Mahadevan-Jansen A, Petrich W (eds) Biomedical vibrational spectroscopy VI: advances in research and industry. SPIE, San Francisco, CA, pp 893906–893907Google Scholar
  38. 38.
    Belousov AI, Verzakov SA, von Frese J (2002) Applicational aspects of support vector machines. J Chemometr 16(8–10):482–489.  https://doi.org/10.1002/cem.744 CrossRefGoogle Scholar
  39. 39.
    Keating ME, Nawaz H, Bonnier F, Byrne HJ (2015) Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets. Analyst 140(7):2482–2492.  https://doi.org/10.1039/C4AN02167C CrossRefPubMedGoogle Scholar
  40. 40.
    Beebe KR, Kowalski BR (1987) An introduction to multivariate calibration and analysis. Anal Chem 59(17):1007A–1017A.  https://doi.org/10.1021/ac00144a001 CrossRefGoogle Scholar
  41. 41.
    McCreery RL (2005) Calibration and validation. In: Raman spectroscopy for chemical analysis. John Wiley & Sons, Inc, Hoboken, NJ, pp 251–291.  https://doi.org/10.1002/0471721646.ch10 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Center for BiophotonicsUniversity of California, DavisSacramentoUSA
  2. 2.Department of Pathology and Laboratory Medicine, Center for BiophotonicsUniversity of California, DavisSacramentoUSA

Personalised recommendations