Skip to main content

Reactive Metabolite Assessment in Drug Discovery and Development in Support of Safe Drug Design

  • Protocol
  • First Online:
Drug-Induced Liver Toxicity

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The contribution of chemically reactive metabolites to drug-induced liver injury and other immune-mediated serious adverse drug reactions has been acknowledged as an important determinant of drug failure. Reasons for individual susceptibilities of patients that result in various forms and severities of adverse drug reactions are manifold. They involve factors such as the underlying diseases, individual genotypes of the immune system, and drug specific risk factors. Likewise, the characterizing of drug metabolizing pathways leading to bioactivation and reactive metabolite formation covalently modifying cellular macromolecules alone has been proven unsuccessful in relating bioactivation to adverse drug reactions. The emergence of sensitive and specific mass spectrometry methods has led to a myriad of experimental approaches trying to establish a causal link between reactive metabolite formation and drug-induced liver injury. Many of these failed. The main two reasons are: (1) Methods are overly sensitive or unspecific and flag many drugs that show a safe history of use in a large population. (2) Reactive metabolite screening methods are too generic and fail to detect drug-specific bioactivation pathways requiring alternative experimental approaches. As a consequence, testing paradigms that integrate knowledge of bioactivation pathways based on chemical structures (structural alerts), chemotype-specific experimental tools for reactive metabolite characterization, and the quantitative assessment of bioactivation pathways relative to “safe” metabolism and dose have emerged. Such strategies that characterize bioactivation potentials in the context of drug metabolism, pharmacokinetic properties, clinical dose and additional risk factors have been proposed and successfully applied across the pharmaceutical industry. Case studies and examples for successful risk assessment strategies and general principles to guide safe drug design are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stepan AF et al (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 24(9):1345–1410

    Article  CAS  PubMed  Google Scholar 

  2. Park BK et al (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306

    Article  CAS  PubMed  Google Scholar 

  3. Evans DC et al (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17(1):3–16

    Article  CAS  PubMed  Google Scholar 

  4. Ma L et al (2008) Rapid screening of glutathione-trapped reactive metabolites by linear ion trap mass spectrometry with isotope pattern-dependent scanning and postacquisition data mining. Chem Res Toxicol 21(7):1477–1483

    Article  CAS  PubMed  Google Scholar 

  5. Nakayama S et al (2011) Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites. Drug Metab Dispos 39(7):1247–1254

    Article  CAS  PubMed  Google Scholar 

  6. Sakatis MZ et al (2012) Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem Res Toxicol 25(10):2067–2082

    Article  CAS  PubMed  Google Scholar 

  7. Thompson RA et al (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25:1616–1632

    Article  CAS  PubMed  Google Scholar 

  8. Brink A et al (2017) Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today 22(5):751–756

    Article  CAS  PubMed  Google Scholar 

  9. Caldwell GW, Yan Z (2006) Screening for reactive intermediates and toxicity assessment in drug discovery. Curr Opin Drug Discov Devel 9(1):47–60

    CAS  PubMed  Google Scholar 

  10. Muster W et al (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  CAS  PubMed  Google Scholar 

  11. Dalvie D, Kalgutkar AS, Chen W (2015) Practical approaches to resolving reactive metabolite liabilities in early discovery. Drug Metab Rev 47(1):56–70

    Article  CAS  PubMed  Google Scholar 

  12. Kalgutkar AS (2008) Role of bioactivation in idiosyncratic drug toxicity: structure–toxicity relationship. In: Elfarra AA (ed) Advances in bioactivation research. American Association of Pharmaceutical Scientists, Arlington, VA, p 440

    Google Scholar 

  13. Kalgutkar AS (2011) Handling reactive metabolite positives in drug discovery: what has retrospective structure-toxicity analyses taught us? Chem Biol Interact 192(1–2):46–55

    Article  CAS  PubMed  Google Scholar 

  14. Kalgutkar AS (2015) Should the incorporation of structural alerts be restricted in drug design? An analysis of structure-toxicity trends with aniline-based drugs. Curr Med Chem 22(4):438–464

    Article  CAS  PubMed  Google Scholar 

  15. Kalgutkar AS et al (2008) Toxicophores, reactive metabolites and drug safety: when is it a cause for concern? Expert Rev Clin Pharmacol 1(4):515–531

    Article  CAS  PubMed  Google Scholar 

  16. Kalgutkar AS et al (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6(3):161–225

    Article  CAS  PubMed  Google Scholar 

  17. Walgren JL, Mitchell MD, Thompson DC (2005) Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit Rev Toxicol 35(4):325–361

    Article  CAS  PubMed  Google Scholar 

  18. Gramec D, Peterlin Masic L, Sollner Dolenc M (2014) Bioactivation potential of thiophene-containing drugs. Chem Res Toxicol 27(8):1344–1358

    Article  CAS  PubMed  Google Scholar 

  19. Lecoeur S et al (1994) Specificity of in vitro covalent binding of tienilic acid metabolites to human liver microsomes in relationship to the type of hepatotoxicity: comparison with two directly hepatotoxic drugs. Chem Res Toxicol 7(3):434–442

    Article  CAS  PubMed  Google Scholar 

  20. Brink A et al (2014) Post-acquisition analysis of untargeted accurate mass quadrupole time-of-flight MS(E) data for multiple collision-induced neutral losses and fragment ions of glutathione conjugates. Rapid Commun Mass Spectrom 28(24):2695–2703

    Article  CAS  PubMed  Google Scholar 

  21. Pahler A, Brink A (2013) Software aided approaches to structure-based metabolite identification in drug discovery and development. Drug Discov Today Technol 10(1):e207–e217

    Article  PubMed  Google Scholar 

  22. Feng S, He X (2013) Mechanism-based inhibition of CYP450: an indicator of drug-induced hepatotoxicity. Curr Drug Metab 14(9):921–945

    Article  CAS  PubMed  Google Scholar 

  23. Kalgutkar AS, Obach RS, Maurer TS (2007) Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and drug reactions. Curr Drug Metab 8(5):407–447

    Article  CAS  PubMed  Google Scholar 

  24. Orr ST et al (2012) Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem 55(11):4896–4933

    Article  CAS  PubMed  Google Scholar 

  25. Argikar UA, Mangold JB, Harriman SP (2011) Strategies and chemical design approaches to reduce the potential for formation of reactive metabolic species. Curr Top Med Chem 11(4):419–449

    Article  CAS  PubMed  Google Scholar 

  26. Baillie TA, Davis MR (1993) Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom 22(6):319–325

    Article  CAS  PubMed  Google Scholar 

  27. Baillie TA et al (1989) The use of mass spectrometry in the study of chemically-reactive drug metabolites. Application of MS/MS and LC/MS to the analysis of glutathione- and related S-linked conjugates of N-methylformamide. J Pharm Biomed Anal 7(12):1351–1360

    Article  CAS  PubMed  Google Scholar 

  28. Castro-Perez J et al (2005) A high-throughput liquid chromatography/tandem mass spectrometry method for screening glutathione conjugates using exact mass neutral loss acquisition. Rapid Commun Mass Spectrom 19(6):798–804

    Article  CAS  PubMed  Google Scholar 

  29. Pearson PG et al (1988) Applications of tandem mass spectrometry to the characterization of derivatized glutathione conjugates. Studies with S-(N-methylcarbamoyl)glutathione, a metabolite of the antineoplastic agent N-methylformamide. Biomed Environ Mass Spectrom 16(1–12):51–56

    Article  CAS  PubMed  Google Scholar 

  30. Rashed MS et al (1989) Application of liquid chromatography/thermospray mass spectrometry to studies on the formation of glutathione and cysteine conjugates from monomethylcarbamate metabolites of bambuterol. Rapid Commun Mass Spectrom 3(10):360–363

    Article  CAS  PubMed  Google Scholar 

  31. Soglia JR et al (2004) The development of a higher throughput reactive intermediate screening assay incorporating micro-bore liquid chromatography-micro-electrospray ionization-tandem mass spectrometry and glutathione ethyl ester as an in vitro conjugating agent. J Pharm Biomed Anal 36(1):105–116

    Article  CAS  PubMed  Google Scholar 

  32. Soglia JR et al (2006) A semiquantitative method for the determination of reactive metabolite conjugate levels in vitro utilizing liquid chromatography-tandem mass spectrometry and novel quaternary ammonium glutathione analogues. Chem Res Toxicol 19(3):480–490

    Article  CAS  PubMed  Google Scholar 

  33. Dieckhaus CM et al (2005) Negative ion tandem mass spectrometry for the detection of glutathione conjugates. Chem Res Toxicol 18(4):630–638

    Article  CAS  PubMed  Google Scholar 

  34. Zhu M et al (2007) Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem 79(21):8333–8341

    Article  CAS  PubMed  Google Scholar 

  35. Argoti D et al (2005) Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol 18(10):1537–1544

    Article  CAS  PubMed  Google Scholar 

  36. Rousu T, Tolonen A (2011) Characterization of cyanide-trapped methylated metabonates formed during reactive drug metabolite screening in vitro. Rapid Commun Mass Spectrom 25(10):1382–1390

    Article  CAS  PubMed  Google Scholar 

  37. Inoue K et al (2009) A trapping method for semi-quantitative assessment of reactive metabolite formation using [35S]cysteine and [14C]cyanide. Drug Metab Pharmacokinet 24(3):245–254

    Article  CAS  PubMed  Google Scholar 

  38. Stachulski AV (2011) Chemistry and reactivity of acyl glucuronides. Curr Drug Metab 12(3):215–221

    Article  CAS  PubMed  Google Scholar 

  39. Zhong S et al (2015) A new rapid in vitro assay for assessing reactivity of acyl glucuronides. Drug Metab Dispos 43(11):1711–1717

    Article  CAS  PubMed  Google Scholar 

  40. Gan J et al (2005) Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem Res Toxicol 18(5):896–903

    Article  CAS  PubMed  Google Scholar 

  41. Takakusa H et al (2009) Quantitative assessment of reactive metabolite formation using 35S-labeled glutathione. Drug Metab Pharmacokinet 24(1):100–107

    Article  CAS  PubMed  Google Scholar 

  42. Fowler S, Zhang H (2008) In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug-drug interactions. AAPS J 10(2):410–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauman JN et al (2009) Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction. Chem Res Toxicol 22(2):332–340

    Article  CAS  PubMed  Google Scholar 

  44. Nakayama S et al (2009) A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab Dispos 37(9):1970–1977

    Article  CAS  PubMed  Google Scholar 

  45. Obach RS et al (2008) Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 21(9):1814–1822

    Article  CAS  PubMed  Google Scholar 

  46. Chen M, Borlak J, Tong W (2016) A model to predict severity of drug-induced liver injury in humans. Hepatology 64(3):931–940

    Article  CAS  PubMed  Google Scholar 

  47. Schadt S et al (2015) Minimizing DILI risk in drug discovery – a screening tool for drug candidates. Toxicol In Vitro 30(1 Pt B):429–437

    Article  CAS  PubMed  Google Scholar 

  48. Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18(12):1917–1926

    Article  CAS  PubMed  Google Scholar 

  49. Hong F et al (2005) Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem 280(36):31768–31775

    Article  CAS  PubMed  Google Scholar 

  50. Shin NY et al (2007) Protein targets of reactive electrophiles in human liver microsomes. Chem Res Toxicol 20(6):859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tzouros M, Pahler A (2009) A targeted proteomics approach to the identification of peptides modified by reactive metabolites. Chem Res Toxicol 22(5):853–862

    Article  CAS  PubMed  Google Scholar 

  52. Hanzlik RP, Fang J, Koen YM (2009) Filling and mining the reactive metabolite target protein database. Chem Biol Interact 179(1):38–44

    Article  CAS  PubMed  Google Scholar 

  53. Hanzlik RP et al (2007) The reactive metabolite target protein database (TPDB)—a web-accessible resource. BMC Bioinformatics 8:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hanzlik RP, Koen YM, Fang J (2013) Bioinformatic analysis of 302 reactive metabolite target proteins. Which ones are important for cell death? Toxicol Sci 135(2):390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim SH, Naisbitt DJ (2016) Update on advances in research on idiosyncratic drug-induced liver injury. Allergy Asthma Immunol Res 8(1):3–11

    Article  CAS  PubMed  Google Scholar 

  56. Singer JB et al (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42(8):711–714

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Pähler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pähler, A. (2018). Reactive Metabolite Assessment in Drug Discovery and Development in Support of Safe Drug Design. In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics