Skip to main content

Status and Use of Induced Pluripotent Stem Cells (iPSCs) in Toxicity Testing

  • Protocol
  • First Online:
Drug-Induced Liver Toxicity

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Adverse drug reactions (ADRs) are a major cause of drug attrition during development and withdrawal from market. Hepatotoxicity is among the most common reasons given for drug attrition or withdrawal; this occurs for a multitude of reasons among which is certainly the lack of adequate models able to recapitulate hepatotoxicity in vitro. The loss of compounds in late-stage testing or after marketing is a major financial burden for the pharmaceutical industry and improved models capable of predicting human toxicity of novel compounds at the early stages of testing are highly sought-after. An ideal novel hepatotoxicity model of should be amenable to high-throughput screening and able to recapitulate the hepatic phenotype over an extended period and also model idiosyncratic drug-induced liver injury (DILI). There are no currently models able to fulfill these requirements.

Pluripotent stem cell-derived hepatocyte-like cells (PSC-HLCs) are a developing model which show promise for hepatotoxicity testing. However, the current phenotype of PSC-HLCs is closer to a fetal hepatocyte than an adult hepatocyte. The methodologies for generating mature PSC-HLCs close to an idealized hepatotoxicity model remain to be developed, though incremental improvements to the state-of-the-art are frequently made. Novel PSC-HLC technologies are being developed independently in many research groups; as such there is a need for standardization in benchmarking of these cells and for evaluating the performance and functionality of newly developed HLC models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laverty H et al (2011) How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol 163(4):675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ostapowicz G et al (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137(12):947–954

    Article  PubMed  Google Scholar 

  3. Mindikoglu AL, Magder LS, Regev A (2009) Outcome of liver transplantation for drug-induced acute liver failure in the United States: analysis of the United Network for Organ Sharing database. Liver Transpl 15(7):719–729

    Article  PubMed  Google Scholar 

  4. Pirmohamed M et al (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329(7456):15–19

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gerets HH et al (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Brien PJ et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80(9):580–604

    Article  PubMed  CAS  Google Scholar 

  7. Gerets HH et al (2009) Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach. Toxicol In Vitro 23(2):319–332

    Article  CAS  PubMed  Google Scholar 

  8. Sassa S et al (1987) Drug metabolism by the human hepatoma cell, Hep G2. Biochem Biophys Res Commun 143(1):52–57

    Article  CAS  PubMed  Google Scholar 

  9. Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150(1):115–128

    Article  CAS  PubMed  Google Scholar 

  10. Sison-Young RL et al (2015) Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol Sci 147(2):412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson LJ et al (2017) Human hepatic HepaRG cells maintain an organotypic phenotype with high intrinsic CYP450 activity/metabolism and significantly outperform standard HepG2/C3A cells for pharmaceutical and therapeutic applications. Basic Clin Pharmacol Toxicol 120(1):30–37

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y et al (2016) The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol 32(1):37–59

    Article  CAS  PubMed  Google Scholar 

  13. Guo L et al (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39(3):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong N et al (2000) A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32(5):1060–1068

    Article  CAS  PubMed  Google Scholar 

  15. Smith CM et al (2012) A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes. J Pharm Sci 101(10):3989–4002

    Article  CAS  PubMed  Google Scholar 

  16. Guillouzo A et al (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168(1):66–73

    Article  CAS  PubMed  Google Scholar 

  17. Madan A et al (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 31(4):421–431

    Article  CAS  PubMed  Google Scholar 

  18. Richert L et al (2006) Gene expression in human hepatocytes in suspension after isolation is similar to the liver of origin, is not affected by hepatocyte cold storage and cryopreservation, but is strongly changed after hepatocyte plating. Drug Metab Dispos 34(5):870

    Article  CAS  PubMed  Google Scholar 

  19. Sjogren AK et al (2014) Critical differences in toxicity mechanisms in induced pluripotent stem cell-derived hepatocytes, hepatic cell lines and primary hepatocytes. Arch Toxicol 88(7):1427–1437

    Article  CAS  PubMed  Google Scholar 

  20. Heslop JA et al (2017) Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch Toxicol 91(1):439–452

    Article  CAS  PubMed  Google Scholar 

  21. Sison-Young RL et al (2017) A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Arch Toxicol 91(3):1385–1400

    Article  CAS  PubMed  Google Scholar 

  22. Inoue C et al (1989) Nicotinamide prolongs survival of primary cultured hepatocytes without involving loss of hepatocyte-specific functions. J Biol Chem 264(9):4747–4750

    Article  CAS  PubMed  Google Scholar 

  23. Katsura N et al (2002) Long-term culture of primary human hepatocytes with preservation of proliferative capacity and differentiated functions. J Surg Res 106(1):115–123

    Article  CAS  PubMed  Google Scholar 

  24. Kost DP, Michalopoulos GK (1991) Effect of 2% dimethyl sulfoxide on the mitogenic properties of epidermal growth factor and hepatocyte growth factor in primary hepatocyte culture. J Cell Physiol 147(2):274–280

    Article  CAS  PubMed  Google Scholar 

  25. Bale SS et al (2015) Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 21(4):413–422

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Lechon MJ et al (1998) Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. J Cell Physiol 177(4):553–562

    Article  CAS  PubMed  Google Scholar 

  27. Bachmann A et al (2015) 3D cultivation techniques for primary human hepatocytes. Microarrays 4(1):64–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bell CC et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knospel F et al (2016) In vitro model for hepatotoxicity studies based on primary human hepatocyte cultivation in a perfused 3D bioreactor system. Int J Mol Sci 17(4):584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Phys 266(6 Pt 1):C1764–C1774

    Article  CAS  Google Scholar 

  31. Bedossa P, Paradis V (2003) Liver extracellular matrix in health and disease. J Pathol 200(4):504–515

    Article  PubMed  Google Scholar 

  32. den Braver-Sewradj SP et al (2016) Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol In Vitro 33:71–79

    Article  CAS  Google Scholar 

  33. Olson H et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  36. Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  PubMed  Google Scholar 

  37. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  38. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez F, Boue S, Izpisua Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12(4):231–242

    Article  CAS  PubMed  Google Scholar 

  40. Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  CAS  PubMed  Google Scholar 

  42. Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cameron K et al (2015) Recombinant laminins drive the differentiation and self-organization of hESC-derived hepatocytes. Stem Cell Reports 5(6):1250–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Godoy P et al (2015) Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol 63(4):934–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kia R et al (2013) Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol 75(4):885–896

    Article  PubMed  Google Scholar 

  46. Cai J et al (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45(5):1229–1239

    Article  CAS  PubMed  Google Scholar 

  47. Ek M et al (2007) Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 74(3):496–503

    Article  CAS  PubMed  Google Scholar 

  48. Söderdahl T et al (2007) Glutathione transferases in hepatocyte-like cells derived from human embryonic stem cells. Toxicol In Vitro 21(5):929–937

    Article  PubMed  CAS  Google Scholar 

  49. Hay DC et al (2008) Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A 105(34):12301–12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shiraki N et al (2008) Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells 13(7):731–746

    Article  CAS  PubMed  Google Scholar 

  51. Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26(5):1117–1127

    Article  CAS  PubMed  Google Scholar 

  52. Moore RN, Moghe PV (2009) Expedited growth factor-mediated specification of human embryonic stem cells toward the hepatic lineage. Stem Cell Res 3(1):51–62

    Article  CAS  PubMed  Google Scholar 

  53. Basma H et al (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136(3):990–999

    Article  CAS  PubMed  Google Scholar 

  54. Song Z et al (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19(11):1233–1242

    Article  PubMed  Google Scholar 

  55. Duan Y et al (2010) Differentiation and characterization of metabolically functioning hepatocytes from human embryonic stem cells. Stem Cells 28(4):674–686

    Article  CAS  PubMed  Google Scholar 

  56. Synnergren J et al (2010) Transcriptional profiling of human embryonic stem cells differentiating to definitive and primitive endoderm and further toward the hepatic lineage. Stem Cells Dev 19(7):961–978

    Article  CAS  PubMed  Google Scholar 

  57. Touboul T et al (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51(5):1754–1765

    Article  CAS  PubMed  Google Scholar 

  58. Brolen G et al (2010) Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol 145(3):284–294

    Article  CAS  PubMed  Google Scholar 

  59. Ghodsizadeh A et al (2010) Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 6(4):622–632

    Article  Google Scholar 

  60. Liu H et al (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810–1819

    Article  CAS  PubMed  Google Scholar 

  61. Si-Tayeb K et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305

    Article  CAS  PubMed  Google Scholar 

  62. Sullivan GJ et al (2010) Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51(1):329–335

    Article  CAS  PubMed  Google Scholar 

  63. Rashid ST et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang S et al (2011) Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet 20(16):3176–3187

    Article  CAS  PubMed  Google Scholar 

  65. Bone HK et al (2011) A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 124(Pt 12):1992–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yildirimman R et al (2011) Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard assessment of chemical carcinogenicity. Toxicol Sci 124(2):278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen YF et al (2012) Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 55(4):1193–1203

    Article  CAS  PubMed  Google Scholar 

  68. Cayo MA et al (2012) JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56(6):2163–2171

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz RE et al (2012) Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(7):2544–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takayama K et al (2012) Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4alpha transduction. Mol Ther 20(1):127–137

    Article  CAS  PubMed  Google Scholar 

  71. Choi SM et al (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57(6):2458–2468

    Article  CAS  PubMed  Google Scholar 

  72. Ramasamy TS et al (2013) Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality. Tissue Eng Part A 19(3–4):360–367

    Article  CAS  PubMed  Google Scholar 

  73. Gieseck Iii RL et al (2014) Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One 9(1):e86372

    Article  PubMed Central  CAS  Google Scholar 

  74. Jia B et al (2014) Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells. Life Sci 108(1):22–29

    Article  CAS  PubMed  Google Scholar 

  75. Avior Y et al (2015) Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes. Hepatology 62(1):265–278

    Article  CAS  PubMed  Google Scholar 

  76. Chien Y et al (2015) Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater 13:228–244

    Article  CAS  PubMed  Google Scholar 

  77. Baxter M et al (2015) Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 62(3):581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goldring C et al (2017) Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 65(2):710–721

    Article  PubMed  Google Scholar 

  79. Yusa K et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ulvestad M et al (2013) Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells. Biochem Pharmacol 86(5):691–702

    Article  CAS  PubMed  Google Scholar 

  81. Takayama K et al (2014) Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci U S A 111(47):16772–16777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park BK et al (2011) Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 10(4):292–306

    Article  CAS  PubMed  Google Scholar 

  83. Liu J et al (2015) Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res 338(2):203–213

    Article  CAS  PubMed  Google Scholar 

  84. Berger DR et al (2015) Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology 61(4):1370–1381

    Article  CAS  PubMed  Google Scholar 

  85. Davidson MD, Ware BR, Khetani SR (2015) Stem cell-derived liver cells for drug testing and disease modeling. Discov Med 19(106):349–358

    PubMed  PubMed Central  Google Scholar 

  86. Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262

    Article  CAS  PubMed  Google Scholar 

  87. Bhushan A et al (2013) Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans. Stem Cell Res Ther 4(Suppl 1):S16

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Marx V (2013) Cell culture: a better brew. Nature 496(7444):253–258

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi Y et al (2015) 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci Rep 35(3):e00208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bruderer R et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chan TS et al (2013) Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 41(12):2024–2032

    Article  CAS  PubMed  Google Scholar 

  93. Nguyen TV et al (2015) Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos 43(5):774–785

    Article  CAS  PubMed  Google Scholar 

  94. Domansky K et al (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58

    Article  CAS  PubMed  Google Scholar 

  95. Kitteringham NR et al (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 877(13):1229–1239

    Article  CAS  PubMed  Google Scholar 

  96. Bhatia SN et al (1998) Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J Biomater Sci Polym Ed 9(11):1137–1160

    Article  CAS  PubMed  Google Scholar 

  97. Zinchenko YS et al (2006) Hepatocyte and kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng 12(4):751–761

    Article  CAS  PubMed  Google Scholar 

  98. Terry C et al (2010) Optimization of the cryopreservation and thawing protocol for human hepatocytes for use in cell transplantation. Liver Transpl 16(2):229–237

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. P. Goldring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wong, M.W., Pridgeon, C.S., Schlott, C., Park, B.K., Goldring, C.E.P. (2018). Status and Use of Induced Pluripotent Stem Cells (iPSCs) in Toxicity Testing. In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics