Skip to main content

Study of Hydrogen Peroxide as a Senescence-Inducing Signal

  • Protocol
  • First Online:
Plant Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1744))

Abstract

In many plant species, leaf senescence correlates with an increase in intracellular levels of reactive oxygen species (ROS) as well as differential regulation of anti-oxidative systems. Due to their reactive nature, reactive oxygen species (ROS) were considered to have only detrimental effects for long time. However, ROS turned out to be more than just toxic by-products of aerobic metabolism but rather major components in different signaling pathways. Considering its relatively long half-life, comparably low reactivity, and its ability to cross membranes, especially hydrogen peroxide, has gained attention as a signaling molecule. In this article, a set of tools to study hydrogen peroxide contents and the activity of its scavenging enzymes in correlation with leaf senescence parameters is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  2. Breeze E, Harrison E, Mchattie S et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

  4. Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zimmermann P, Heinlein C, Orendi G et al (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  CAS  PubMed  Google Scholar 

  6. Miao Y, Laun T, Zimmermann P et al (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  7. Balazadeh S, Kwasniewski M, Caldana C et al (2011) ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4:346–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu A, Allu AD, Garapati P et al (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bieker S, Riester L, Stahl M et al (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  10. Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  PubMed  Google Scholar 

  11. Costa A, Drago I, Behera S et al (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca(2+)-dependent scavenging system. Plant J 62:760–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niethammer P, Grabher C, Look AT et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pase L, Layton JE, Wittmann C et al (2012) Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 22:1818–1824

    Article  CAS  PubMed  Google Scholar 

  14. Markvicheva KN, Bilan DS, Mishina NM et al (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19:1079–1084

    Article  CAS  PubMed  Google Scholar 

  15. Tiedemann AV (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166

    Article  CAS  Google Scholar 

  16. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  PubMed  Google Scholar 

  17. Chandlee JM, Scandalios JG (1984) Analysis of variants affecting the catalase developmental program in maize scutellum. Theor Appl Genet 69:71–77

    Article  CAS  PubMed  Google Scholar 

  18. Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  CAS  PubMed  Google Scholar 

  19. Baum JA, Scandalios JG (1981) Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch Biochem Biophys 206:249–264

    Article  CAS  PubMed  Google Scholar 

  20. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  22. Hodges DM, Delong JM, Forney CF et al (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  23. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  24. Zhu J, Tremblay N, Liang Y (2012) Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Can J Soil Sci 92:645–648

    Article  Google Scholar 

  25. Skadsen RW, Scandalios JG (1987) Translational control of photo-induced expression of the Cat2 catalase gene during leaf development in maize. Proc Natl Acad Sci 84:2785–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Havir EA (1992) The in vivo and in vitro inhibition of catalase from leaves of Nicotiana sylvestris by 3-amino-1,2,4-triazole. Plant Physiol 99:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Asada K, Yoshikawa K, Takahashi M et al (1975) Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem 250:2801–2807

    CAS  PubMed  Google Scholar 

  28. Ye Z, Rodriguez R, Tran A et al (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci 158:115–127

    Article  CAS  PubMed  Google Scholar 

  29. Zentgraf U, Zimmermann P, Smykowski A (2012) Role of intracellular hydrogen peroxide as signalling molecule for plant senescence. In: Nagata T (ed) Senescence. InTech , ISBN: 978-953-51-0144-4, DOI: 10.5772/34576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Zentgraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bieker, S., Potschin, M., Zentgraf, U. (2018). Study of Hydrogen Peroxide as a Senescence-Inducing Signal. In: Guo, Y. (eds) Plant Senescence. Methods in Molecular Biology, vol 1744. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7672-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7672-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7670-6

  • Online ISBN: 978-1-4939-7672-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics