Skip to main content

Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis

  • Protocol
  • First Online:
Plant Programmed Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1743))

Abstract

The hypersensitive response is one of the most powerful and complex defense reactions to survive to pathogen attacks during an incompatible plant–pathogen interaction. Local programmed cell death accompanies the hypersensitive response at the site of infection to prevent pathogen growth and spread. A precise quantitative assessment of this form of programmed cell death is essential to unravel the genetic and molecular mechanisms underlying the process. Here, we first describe the optimization of a Trypan Blue staining protocol for quantitatively measuring the HR-cell death in Arabidopsis. Furthermore, we provide an electrolyte leakage protocol based on pathogen vacuum infiltration, which allows its simultaneous application to a large number of plants as well as to Arabidopsis mutants affected by small size phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  2. Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744. https://doi.org/10.1126/science.1171647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548. https://doi.org/10.1038/nrg2812

    Article  CAS  PubMed  Google Scholar 

  4. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511. https://doi.org/10.1146/annurev-arplant-050213-040012

    Article  CAS  PubMed  Google Scholar 

  5. Mur LA, Kenton P, Lloyd AJ et al (2008) The hypersensitive response: the centenary is upon us but how much do we know? J Exp Bot 59:501–520. https://doi.org/10.1093/jxb/erm239

    Article  CAS  PubMed  Google Scholar 

  6. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256. https://doi.org/10.1038/cdd.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thordal-Christensen H, Zhang ZG et al (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194. https://doi.org/10.1046/j.1365-313X.1997.11061187.x

    Article  CAS  Google Scholar 

  8. Chen J, Vandelle E, Bellin D et al (2014) Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there’s a will there’s a way. Nitric Oxide 43:81–88. https://doi.org/10.1016/j.niox.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  9. Kim MG, Mackey D (2008) Measuring cell-wall-based defenses and their effect on bacterial growth in Arabidopsis. Methods Mol Biol 415:443–452. https://doi.org/10.1007/978-1-59745-570-1_26

    CAS  PubMed  Google Scholar 

  10. Choi HW, Kim YJ, Lee SC et al (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904. https://doi.org/10.1104/pp.107.103325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445. https://doi.org/10.1105/tpc.2.5.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parkin KL, Kuo SJ (1989) Chilling-induced lipid degradation in cucumber (Cucumis sativa L. cv hybrid C) fruit. Plant Physiol 90:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campos PS, Quartin V, Ramalho JC et al (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  14. Thalhammer A, Hincha DK, Zuther E (2014) Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. Methods Mol Biol 1166:15–24. https://doi.org/10.1007/978-1-4939-0844-8_3

    Article  CAS  PubMed  Google Scholar 

  15. Whitlow TH, Bassuk NL, Ranney TG et al (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rolny N, Costa L, Carrion C et al (2011) Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence? Plant Physiol Biochem 49:1220–1227. https://doi.org/10.1016/j.plaphy.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  17. Bajji M, Lutts S, Kinet J (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    Article  CAS  PubMed  Google Scholar 

  18. Fan XT, Sokorai KJB (2005) Assessment of radiation sensitivity of fresh-cut vegetables using electrolyte leakage measurement. Postharvest Biol Technol 36:191–197. https://doi.org/10.1016/j.postharvbio.2004.12.004

    Article  CAS  Google Scholar 

  19. Baker CJ, Oneill NR, Keppler LD et al (1991) Early responses during plant-bacteria interactions in tobacco cell-suspensions. Phytopathology 81:1504–1507. https://doi.org/10.1094/Phyto-81-1504

    Article  Google Scholar 

  20. Mackey D, Belkhadir Y, Alonso JM et al (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389

    Article  CAS  PubMed  Google Scholar 

  21. Johansson ON, Nilsson AK, Gustavsson MB (2015) A quick and robust method for quantification of the hypersensitive response in plants. PeerJ 3:e1469. https://doi.org/10.7717/peerj.1469

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dellagi A, Brisset MN, Paulin JP et al (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact 11:734–742. https://doi.org/10.1094/MPMI.1998.11.8.734

    Article  CAS  PubMed  Google Scholar 

  23. Brisset MN, Paulin JP (1991) Relationships between electrolyte leakage from Pyrus communis and virulence of Erwinia amylovora. Physiol Mol Plant Pathol 38:443–453. https://doi.org/10.1016/S0885-5765(05)80112-2

    Article  Google Scholar 

  24. Rose L, Atwell S, Grant M et al (2012) Parallel loss-of-function at the RPM1 bacterial resistance locus in Arabidopsis thaliana. Front Plant Sci 3:287. https://doi.org/10.3389/fpls.2012.00287

    PubMed  PubMed Central  Google Scholar 

  25. Bisgrove SR, Simonich MT, Smith NM et al (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933. https://doi.org/10.1105/tpc.6.7.927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grant MR, Godiard L, Straube E et al (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  27. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Bellin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imanifard, Z., Vandelle, E., Bellin, D. (2018). Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis. In: De Gara, L., Locato, V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology, vol 1743. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7668-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7668-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7667-6

  • Online ISBN: 978-1-4939-7668-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics