Skip to main content

Investigation of Morphological Features of Autophagy During Plant Programmed Cell Death

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1743))

Abstract

The investigation of autophagy particularly when observed during programmed cell death (PCD) is strongly based on the morphological features recorded with transmission electron microscope (TEM). Here we describe methods to induce and to inhibit autophagy in plants. Also some tips for obtaining better preservation of biological membranes, crucial for the investigation of autophagy, are provided together with information about plant autophagic mutants, use of antibodies and methods for 3D reconstruction of large membrane-bound objects that are commonly formed during autophagic processes leading to PCD in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Papini A, Mosti S, van Doorn WG (2014) Classical macroautophagy in Lobivia rauschii (Cactaceae) and possible plastidial autophagy in Tillandsia albida (Bromeliaceae) tapetum cells. Protoplasma 251(3):719–725

    PubMed  Google Scholar 

  2. Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  3. Papini A, Mosti S, Brighigna L (1999) Programmed cell death events in the tapetum development of angiosperms. Protoplasma 207:213–221

    Article  Google Scholar 

  4. Papini A, Mosti S, Milocani E, Tani G, Di Falco P, Brighigna L (2011) Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae). Protoplasma 248:651–662

    Article  PubMed  Google Scholar 

  5. Brighigna L, Milocani E, Papini A, Vesprini JL (2006) Programmed cell death in the nucellus of Tillandsia (Bromeliaceae). Caryologia 59(4):334–339

    Article  Google Scholar 

  6. Papini A, Tani G, Di Falco P, Brighigna L (2010) The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora 205(2):94–100

    Article  Google Scholar 

  7. Mosti S, Papini A, Andalò C, Brighigna L (2001) Ultrastructural aspects of the hypanthial epithelium of Selenicereus grandiflorus (L.) Britton & Rose (Cactaceae). Flora 196(3):194–203

    Article  Google Scholar 

  8. Mosti S, Ross Friedman C, Pacini E, Brighigna L, Papini A (2013) Nectary ultrastructure and secretory modes in three species of Tillandsia L. (Bromeliaceae) that have different pollinators. Botany 91:786–798

    Article  CAS  Google Scholar 

  9. Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325

    Article  CAS  PubMed  Google Scholar 

  10. Papini A, Mosti S, Tani G, Di Falco P, Lazzeri L, Lewke Bandara N (2010) Ultrastructural aspects of the embryo and different endosperm compartments, in Eruca sativa Hill cv. Nemat (Brassicaceae) during heart and torpedo stages. Caryologia 63(2):197–210

    Article  Google Scholar 

  11. Papini A, Fani F, Belli M, Niccolai C, Tani C, Di Falco P, Nuccio C, Lazzara L (2017) Structural and ultrastructure changes show an increase of amoeboid forms in Heterosigma akashiwo (Raphidophyceae), during recovery after nutrient depletion. Plant Biosyst 151(6):965–973

    Google Scholar 

  12. Tooze SA, Dooley HC, Jefferies HBJ, Joachim J, Judith D, Lamb CA, Razi M, Wirth M (2014) Assessing mammalian autophagy. Methods Mol Biol 270:155–165

    Google Scholar 

  13. Klionsky et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222

    Article  Google Scholar 

  14. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Kim SO, Li Y, Han J (2006) Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem 281:19179–19187

    Article  CAS  PubMed  Google Scholar 

  16. van Doorn WG, Papini A (2013) Ultrastructure of autophagy in plant cells: a review. Autophagy 9(12):1922–1936

    Article  PubMed  Google Scholar 

  17. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winkenbach F (1970) Zum Stoffwechsel der aufblühenden und welkenden Korolle der Prunkwinde Ipomoea purpurea. I. Beziehungen zwischen Gestaltwandel, Stofftransport, Atmung und Invertaseaktivität. Ber Schweiz Bot Ges 80:374–390

    Google Scholar 

  19. Matile P, Winkenbach F (1971) Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory Ipomoea purpurea. J Exp Bot 22:759–771

    Article  CAS  Google Scholar 

  20. Nägl W (1977) ‘Plastolysomes’ — plastids involved in the autolysis of the embryo-suspensors in Phaseolus. Z Pflanzenphysiol 85:45–51

    Article  Google Scholar 

  21. Papini A, Van Doorn W (2015) Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes? J Plant Physiol 174:36–40

    Article  CAS  PubMed  Google Scholar 

  22. Gärtner PJ, Nagl W (1980) Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta 149:341–349

    Article  PubMed  Google Scholar 

  23. van Doorn WG, Kirasak K, Sonong A, Srihiran Y, van Lent J, Ketsa S (2011) Do plastids in Dendrobium cv. Lucky Duan petals function similar to autophagosomes and autolysosomes? Autophagy 7:584–597

    Article  PubMed  Google Scholar 

  24. van Doorn WG, Papini A (2017) Plastid degeneration in Tillandsia albida (Bromeliaceae) and Lobivia rauschii (Cactaceae) provides evidence about the origin and destiny of multilamellar bodies in plants. Phytomorphology 66(3&4):103–112

    Google Scholar 

  25. Krysko DV, Vanden Berghe T, Parthoens E, D’Herde K, Vandenabeele P (2008) Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Meth Enzymol 442:308–341

    Google Scholar 

  26. Zakeri Z, Melendez A, Lockshin RA (2008) Detection of autophagy in cell death. Meth Enzymol 442:289–306

    Article  PubMed  Google Scholar 

  27. Honig A, Avin-Wittenberg T, Ufaz S, Galili G (2012) A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 24:288–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53:1355–1365

    Article  CAS  PubMed  Google Scholar 

  29. Sláviková S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849

    Article  PubMed  Google Scholar 

  30. Dashek WV (ed) (2000) Methods in plant electron microscopy and Cytochemistry, Humana press. Totowa, NJ

    Google Scholar 

  31. Kuo J (2007) Processing plant tissues for Ultrastructural study. In: Kuo J (ed) Electron microscopy volume 369 of the series methods in molecular biology. Humana Press, Totowa, pp 35–45

    Google Scholar 

  32. McDonald K, Morphew MK (1993) Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Microsc Res Tech 24:465–473

    Article  CAS  PubMed  Google Scholar 

  33. Austin JR II (2014) High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy. Methods Mol Biol 1062:473–486

    Article  PubMed  Google Scholar 

  34. Fišerová J, Richardson C, Goldberg MW (2016) Immunoelectron microscopy of Cryofixed freeze-substituted yeast Saccharomyces cerevisiae. High-resolution imaging of cellular proteins. Methods Mol Biol 1474:243–258

    Article  PubMed  Google Scholar 

  35. Vanhecke D, Herrmann G, Graber W, Hillmann-Marti T, Mühlfeld C, Studer D, Ochs M (2010) Lamellar body ultrastructure revisited: high-pressure freezing and cryo-electron microscopy of vitreous sections. Histochem Cell Biol 134:319–326

    Article  CAS  PubMed  Google Scholar 

  36. Luft JH (1956) Permanganate—a new fixative for electron microscopy. J Biophys Biochem Cytol 2(6):799–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wright R (2000) Transmission electron microscopy of yeast. Microsc Res Tech 51(6):496–510

    Article  CAS  PubMed  Google Scholar 

  38. Frankl A, Mari M, Reggiori F (2015) Electron microscopy for ultrastructural analysis and protein localization in Saccharomyces cerevisiae. Microbial Cell 2(11):412–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kreger-van Rij NJW, Veenhuis M (1971) Bipolar budding in yeasts — an electron microscope study. Antonie Van Leeuwenhoek 37:125–136

    Article  CAS  PubMed  Google Scholar 

  40. Osumi M (2012) Visualization of yeast cells by electron microscopy. Microscopy 61:343–365

    Article  CAS  Google Scholar 

  41. Toyooka K, Kang BH (2014) Reconstructing plant cells in 3D by serial section electron tomography. Methods Mol Biol 1080:159–170

    Google Scholar 

  42. Marabini R, Herman GT, Carazo JM (1998) 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72(1–2):53–65

    Article  CAS  PubMed  Google Scholar 

  43. Nogales E (2016) The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13:24–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadi M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  45. van Heel M, Keegstra W (1981) IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7:113–130

    Article  Google Scholar 

  46. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  47. Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z, Penczek PA, Yang C, Glaeser RM, Adams PD, Ludtke SJ (2007) SPARX, a new environment for Cryo-EM image processing. J Struct Biol 157:47–55

    Article  CAS  PubMed  Google Scholar 

  48. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ (2012) TrakEM2 software for neural circuit reconstruction. PLoS One 7(6):e38011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Montagner YL, Lagache T, Dufour A, Olivo-Marin J (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  PubMed  Google Scholar 

  50. Schertel A, Snaidero N, Han HM, Ruhwedel T, Laue M, Grabenbauer M, Möbius W (2013) Cryo FIB-SEM: volume imaging of cellular ultrastructure in native frozenspecimens. J Struct Biol 184:355–360

    Article  CAS  PubMed  Google Scholar 

  51. Heymann JA, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniam S (2006) Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155:63–73

    Article  PubMed  PubMed Central  Google Scholar 

  52. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  CAS  PubMed  Google Scholar 

  53. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RDA (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karanasios E, Ktistakis NT (2016) Studying autophagy: list of useful antibodies produced via a community effort. In: Karanasios E, Ktistakis NT (eds) Autophagy at the cell, tissue and organismal level. SpringerBriefs in cell biology, Springer, Cham, pp 81–103

    Google Scholar 

  55. Herman EM (2000) Electron microscopic immunogold localization. In: Dashek WV (ed) Methods in plant electron microscopy and cytochemistry. Humana Press, Totowa, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Papini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Papini, A. (2018). Investigation of Morphological Features of Autophagy During Plant Programmed Cell Death. In: De Gara, L., Locato, V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology, vol 1743. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7668-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7668-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7667-6

  • Online ISBN: 978-1-4939-7668-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics