Skip to main content

Measurement of Cyclic GMP During Plant Hypersensitive Disease Resistance Response

  • Protocol
  • First Online:
Plant Programmed Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1743))

Abstract

Cyclic guanosine-3′,5′-monophosphate (cGMP) is recognized as an important second messenger in plants, mediating intracellular signal in important physiological processes, including the hypersensitive disease resistance response induced by avirulent pathogens. In this context, the analysis of cGMP levels in infected plants requires an accurate and specific detection method allowing its quantification. Here, we describe an assay based on the Alphascreen technology, developed for animal cells and further adapted and optimized for the detection of cGMP in plants. The method is applied for the measurement of cGMP in Arabidopsis thaliana plants challenged with an avirulent strain of Pseudomonas syringae pv. tomato. This protocol includes the extraction of cGMP, the assay procedure and the calculation of cGMP concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowler C, Neuhaus G, Yamagata H, Chua N-H (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77(1):73–81

    Article  CAS  PubMed  Google Scholar 

  2. Neuhaus G, Bowler C, Kern R, Chua N-H (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73(5):937–952

    Article  CAS  PubMed  Google Scholar 

  3. Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16(10):2554–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89(9):3736–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256(5057):663–665

    Article  CAS  PubMed  Google Scholar 

  6. Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8(12):2325–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95(17):10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65(17):2423–2437

    Article  CAS  PubMed  Google Scholar 

  9. Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127(4):1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133(1):307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45(5):700–711

    Article  CAS  PubMed  Google Scholar 

  12. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414

    CAS  PubMed  Google Scholar 

  13. Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Ebermann R (1994) Gaseous nitric oxide stimulates guanosine-3′,5′-cyclic monophosphate (cGMP) formation in spruce needles. Phytochemistry 36(2):259–262

    Article  CAS  Google Scholar 

  14. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588

    Article  CAS  PubMed  Google Scholar 

  15. Hussain J, Chen J, Locato V, Sabetta W, Behera S, Cimini S, Griggio F, Martínez-Jaime S, Graf A, Bouneb M, Pachaiappan R, Fincato P, Blanco E, Costa A, De Gara L, Bellin D, de Pinto MC, Vandelle E (2016) Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 6:36423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y (2014) Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J Exp Bot 65(6):1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137(2):663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008) Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165(8):858–867

    Article  CAS  PubMed  Google Scholar 

  19. Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4(4):307–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-Oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158(2):725–736

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt PM (2009) Biochemical detection of cGMP from past to present: an overview. In: Schmidt HHHW, Hofmann F, Stasch J-P (eds) cGMP: generators, effectors and therapeutic implications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 195–228

    Chapter  Google Scholar 

  22. Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569(1–3):317–320

    Article  CAS  PubMed  Google Scholar 

  23. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181(4):860–870

    Article  CAS  PubMed  Google Scholar 

  24. Suita K, Kiryu T, Sawada M, Mitsui M, Nakagawa M, Kanamaru K, Yamagata H (2009) Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta 229(2):403–413

    Article  CAS  PubMed  Google Scholar 

  25. Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID (2011) cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol 191(1):57–69

    Article  CAS  PubMed  Google Scholar 

  26. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286(25):22580–22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel K-H, Durner J (2016) Systemic induction of NO-, redox-, and cGMP signaling in the pumpkin extrafascicular phloem upon local leaf wounding. Front Plant Sci 7:154

    PubMed  PubMed Central  Google Scholar 

  28. Bellin D, Delledonne M, Vandelle E (2016) Detection of peroxynitrite in plants exposed to bacterial infection. In: Gupta KJ (ed) Plant nitric oxide: methods and protocols. Springer New York, New York, NY, pp 191–200

    Chapter  Google Scholar 

Download references

Acknowledgments

E.V. was supported by the Future in Research Program (FIRB 2010—RBFR10S1LJ_004) funded by the Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Vandelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, J., Bellin, D., Vandelle, E. (2018). Measurement of Cyclic GMP During Plant Hypersensitive Disease Resistance Response. In: De Gara, L., Locato, V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology, vol 1743. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7668-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7668-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7667-6

  • Online ISBN: 978-1-4939-7668-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics