Skip to main content

Programmed Cell Death in Plants: An Overview

  • Protocol
  • First Online:
Plant Programmed Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1743))

Abstract

Programmed cell death (PCD) is a controlled mechanism that eliminates specific cells under developmental or environmental stimuli. All organisms—from bacteria to multicellular eukaryotes—have the ability to induce PCD in selected cells. Although this process was first identified in plants, the interest in deciphering the signaling pathways leading to PCD strongly increased when evidence came to light that PCD may be involved in several human diseases. In plants, PCD activation ensures the correct occurrence of growth and developmental processes, among which embryogenesis and differentiation of tracheary elements. PCD is also part of the defense responses activated by plants against environmental stresses, both abiotic and biotic.

This chapter gives an overview of the roles of PCD in plants as well as the problems arising in classifying different kinds of PCD according to defined biochemical and cellular markers, and in comparison with the various types of PCD occurring in mammal cells. The importance of understanding PCD signaling pathways, with their elicitors and effectors, in order to improve plant productivity and resistance to environmental stresses is also taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ameisen JC (2004) Looking for death at the core of life in the light of evolution. Cell Death Differ 11:4–10

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B et al (2013) Ophiobolin a, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 43:575–585

    Google Scholar 

  4. Paradiso A, de Pinto MC, Locato V, De Gara L (2012) Galactone-γ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation plant biology. Plant Biol 14:652–658

    Google Scholar 

  5. Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  7. Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A 106:20995–21000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  PubMed  Google Scholar 

  9. Hussain J, Chen J, Locato V, Sabetta W, Behera S, Cimini S, Griggio F, Martínez-Jaime S, Graf A, Bouneb M, Pachaiappan R, Fincato P, Blanco E, Costa A, De Gara L, Bellin D, de Pinto MC, Vandelle E (2016) Constitutive cyclic GMP accumulation in Arabidopsis Thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 6:36423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huysmans M, Lema AS, Coll NS, Nowack MK (2016) Dying two deaths - programmed cell death regulation in development and disease. Curr Opin Plant Biol 35:37–44

    Article  PubMed  Google Scholar 

  11. Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J (2014) Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol Plant 7:1075–1093

    Article  CAS  PubMed  Google Scholar 

  12. Van Aken O, Pogson B (2017) Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 24:955–960

    Article  PubMed  Google Scholar 

  13. Jones AM (2001) Programmed cell death in development and Defense. Plant Physiol 125:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  15. Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  16. van Doorn WG (2011) A classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  Google Scholar 

  17. Escamez S, Tuominen H (2014) Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. J Exp Bot 65:1313–1321

    Article  CAS  PubMed  Google Scholar 

  18. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) B morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  Google Scholar 

  19. Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366

    PubMed  PubMed Central  Google Scholar 

  20. Bosch M, Franklin-Tong VE (2008) Self-incompatibility in Papaver: signalling to trigger PCD in incompatible pollen. J Exp Bot 59:481–490

    Article  CAS  PubMed  Google Scholar 

  21. Gunawardena AHLAN (2008) Programmed cell death and tissue remodelling in plants. J Exp Bot 59:445–451

    Article  CAS  PubMed  Google Scholar 

  22. Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20:102–113

    Article  PubMed  Google Scholar 

  23. Gómez Ros LV, Paradiso A, Gabaldón C, Pedreño MA, de Gara L, Ros Barceló A (2006) Two distinct cell sources of H2O2 in the lignifying Zinnia Elegans cell culture system. Protoplasma 227:175–183

    Article  PubMed  Google Scholar 

  24. Daneva A, Gao Z, Van Durme M, Nowack MK (2016) Functions and regulation of programmed cell death in plant development. Annu Rev Cell Dev Biol 32:441–468

    Article  CAS  PubMed  Google Scholar 

  25. Moeder W, Yoshioka K (2008) Lesion mimic mutants A classical, yet still fundamental approach to study programmed cell death. Plant Signal Behav 3:764–767

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  27. Locato V, Paradiso A, Sabetta W, De Gara L, de Pinto MC (2016) Nitric oxide and reactive oxygen species in PCD Signaling. Adv Bot Res 77:165–192

    Article  CAS  Google Scholar 

  28. Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317

    Article  CAS  PubMed  Google Scholar 

  29. Olvera-Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M, Simaskova M, van Durme M, Buscaill P, Rivas S, S Coll N, Coppens F, Maere S, Nowack MK (2015) A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol 169:2684–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  30. de Pinto MC, Locato V, Sgobba A, Romero-Puertas M d C, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed  PubMed Central  Google Scholar 

  31. Locato V, Novo Uzal E, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L (2015) Low concentrations of the toxin ophiobolin a lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. J Exp Bot 66:2991–3000

    Article  CAS  PubMed  Google Scholar 

  32. Vacca RA, Valenti D, Bobba A, de Pinto MC, Merafina RS, De Gara L, Passerella S, Marra E (2007) Proteasome function is required for activation of programmed cell death in heath shocked tobacco bright yellow 2 cells. FEBS Lett 581:917–922

    Article  CAS  PubMed  Google Scholar 

  33. de Pinto MC, Locato V, Paradiso A, De Gara L (2015) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116:487–596

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ research was partly supported by MIUR, PRIN - Prot. 20153NM8RM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittoria Locato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Locato, V., De Gara, L. (2018). Programmed Cell Death in Plants: An Overview. In: De Gara, L., Locato, V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology, vol 1743. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7668-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7668-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7667-6

  • Online ISBN: 978-1-4939-7668-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics