Skip to main content

Correlation of Glioma Proliferation and Hypoxia by Luciferase, Magnetic Resonance, and Positron Emission Tomography Imaging

  • Protocol
  • First Online:
Book cover Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

Abstract

Gliomas are the most common type of primary, malignant brain tumor and significantly impact patients, who have a median survival of ~1 year depending on mutational background. Novel imaging modalities such as luciferase bioluminescence, micro-magnetic resonance imaging (micro-MRI), micro-computerized tomography (micro-CT), and micro-positron emission tomography (micro-PET) have expanded the portfolio of tools available to study this disease. Hypoxia, a key oncogenic driver of glioma and mechanism of resistance, can be studied in vivo by the concomitant use of noninvasive MRI and PET imaging. We present a protocol involving stereotactic injection of syngenic F98 luciferase-expressing glioma cells generated by our laboratory into Fischer 344 rat brains and imaging using luciferase. In addition, 18-F-fludeoxyglucose, 18F–fluoromisonidazole, and 18F–fluorothymidine PET imaging are compared with quantified luciferase flux. These tools can potentially be used for assessing tumor growth characteristics, hypoxia, mutational effects, and treatment effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology 17(Suppl 4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karsy M, Guan J, Cohen AL et al (2017) New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 17(2):19

    Article  PubMed  Google Scholar 

  3. Karsy M, Neil JA, Guan J et al (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4

    Article  PubMed  Google Scholar 

  4. Gillespie DL, Aguirre MT, Ravichandran S et al (2015) RNA interference targeting hypoxia-inducible factor 1alpha via a novel multifunctional surfactant attenuates glioma growth in an intracranial mouse model. J Neurosurg 122(2):331–341

    Article  PubMed  Google Scholar 

  5. Ramachandran R, Junnuthula VR, Gowd GS et al (2017) Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep 7:43271

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xuesong D, Wei X, Heng L et al (2016) Evaluation of neovascularization patterns in an orthotopic rat glioma model with dynamic contrast-enhanced MRI. Acta Radiol. https://doi.org/10.1177/0284185116681038

  7. Lehmann S, Stiehl DP, Honer M et al (2009) Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events. Proc Natl Acad Sci U S A 106(33):14004–14009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lo Dico A, Valtorta S, Martelli C et al (2014) Validation of an engineered cell model for in vitro and in vivo HIF-1alpha evaluation by different imaging modalities. Mol Imaging Biol 16(2):210–223

    Article  CAS  PubMed  Google Scholar 

  9. Dhermain FG, Hau P, Lanfermann H et al (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9(9):906–920

    Article  PubMed  Google Scholar 

  10. Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neuro-Oncol 36(1):91–102

    Article  CAS  Google Scholar 

  11. Biasibetti E, Valazza A, Capucchio MT et al (2017) Comparison of allogeneic and syngeneic rat glioma models by using MRI and histopathologic evaluation. Comp Med 67(2):147–156

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bansal A, Wong TZ, Degrado TR (2011) PET imaging of gliomas. In: Chen C (ed) Advances in the biology, imaging and therapies for Glioblastoma. InTech, Rijeka, Croatia

    Google Scholar 

  13. Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808

    Article  CAS  PubMed  Google Scholar 

  14. Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute trials. J Nucl Med 47(6):1059–1066

    CAS  PubMed  Google Scholar 

  15. Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54(6):903–912

    Article  CAS  PubMed  Google Scholar 

  16. Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111(2):292–304

    Article  CAS  PubMed  Google Scholar 

  17. Flores JE, McFarland LM, Vanderbilt A et al (2008) The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imaging Biol 10(4):192–200

    Article  PubMed  Google Scholar 

  18. Lee KH, Ko BH, Paik JY et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46(9):1531–1536

    CAS  PubMed  Google Scholar 

  19. van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45(4):695–700

    PubMed  Google Scholar 

  20. Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54(10):1825–1832

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karsy, M., Gillespie, D.L., Horn, K.P., Burrell, L.D., Yap, J.T., Jensen, R.L. (2018). Correlation of Glioma Proliferation and Hypoxia by Luciferase, Magnetic Resonance, and Positron Emission Tomography Imaging. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics