Skip to main content

Fluorescence-Activated Cell Sorting of Murine Mammary Cancer Stem-Like Cell Subpopulations with HIF Activity

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

Abstract

Fluorescence-activated cell sorting (FACS) is a common method to identify and to isolate subpopulations within a complex mixture of cells based on their light scatter and fluorescent staining profiles. FACS is widely used to enrich for normal tissue and tumor cells that have stem cell potential. Whereas FACS protocols using conventional breast cancer cell lines are relatively routine, additional technical challenges are encountered when sorting for cell populations from freshly digested solid tumors, particularly for use in downstream cancer stem cell (CSC) assays. First, it is more difficult to isolate live, single cells from whole tumors, and second, single tumor cells prepared from enzymatically digested tumors are typically more sensitive to cell death following the physical stresses of digestion, pipetting, and sorting. Herein methods are described that have been optimized to harvest and to FACS profile viable tumor epithelial cells digested from late-stage mammary tumors originating in the mouse mammary tumor virus (MMTV)-polyomavirus middle T antigen (PyMT) transgenic mouse. Protocols were designed to enrich for single, viable, MMTV-PyMT tumor cell populations sorted by FACS and to facilitate the collection of sorted cell subpopulations suitable for head-to-head comparison of CSC activity by tumorsphere assays in vitro or limiting dilution transplantation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6. https://doi.org/10.1186/bcr3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Semenza GL (2016) Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Mol Asp Med 47–48:15–23. https://doi.org/10.1016/j.mam.2015.09.004

    Article  Google Scholar 

  4. Sreekumar A, Roarty K, Rosen JM (2015) The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes. Endocr Relat Cancer 22(6):T161–T176. https://doi.org/10.1530/ERC-15-0263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28(11):1143–1158. https://doi.org/10.1101/gad.242511.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6(4):157–162

    Article  CAS  PubMed  Google Scholar 

  7. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214. https://doi.org/10.1016/j.tips.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454

    Article  CAS  PubMed  Google Scholar 

  9. Wei W, Lewis MT (2015) Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocr Relat Cancer 22(3):R135–R155. https://doi.org/10.1530/ERC-14-0447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577. https://doi.org/10.1101/gad.1849509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE, Michalowska AM, Rosen JM (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68(12):4674–4682. https://doi.org/10.1158/0008-5472.CAN-07-6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao L, Cardiff RD, Steinbach P, Messer KS, Ellies LG (2015) Multipotent luminal mammary cancer stem cells model tumor heterogeneity. Breast Cancer Res 17(1):137. https://doi.org/10.1186/s13058-015-0615-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13(2):141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma J, Lanza DG, Guest I, Uk-Lim C, Glinskii A, Glinsky G, Sell S (2012) Characterization of mammary cancer stem cells in the MMTV-PyMT mouse model. Tumour Biol 33(6):1983–1996. https://doi.org/10.1007/s13277-012-0458-4

    Article  CAS  PubMed  Google Scholar 

  16. Alexander CM, Puchalski J, Klos KS, Badders N, Ailles L, Kim CF, Dirks P, Smalley MJ (2009) Separating stem cells by flow cytometry: reducing variability for solid tissues. Cell Stem Cell 5(6):579–583. https://doi.org/10.1016/j.stem.2009.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126. https://doi.org/10.1016/S0002-9440(10)63568-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67(2):563–572. https://doi.org/10.1158/0008-5472.CAN-06-2701

    Article  CAS  PubMed  Google Scholar 

  19. Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, Welm B, Wagner KU, Neville M, Johnson RS (2003) HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development 130(8):1713–1724

    Article  CAS  PubMed  Google Scholar 

  20. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176(1):19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70(11):4624–4633. https://doi.org/10.1158/0008-5472.CAN-09-3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (CA138488), the Department of Defense (IDEA award BC083846), and the UTHSC Gerwin Cancer Research fund to T.N.S. Luciana P. Schwab created the HIF-1 WT and KO PyMT tumor cell line models and developed initial flow sorting protocols. All experiments were conducted at the UTHSC Flow Cytometry and Flow Sorting (FCCS) core facility, which is supported by the UTHSC campus Office of Research. Expert technical assistance was provided by Drs. Tony Marion and Dan Rosson. The BD Biosciences Aria II sorter was purchased with the support of a NIH instrumentation award (S10 RR022465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle L. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brooks, D.L., Seagroves, T.N. (2018). Fluorescence-Activated Cell Sorting of Murine Mammary Cancer Stem-Like Cell Subpopulations with HIF Activity. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics