Skip to main content

Monitoring Functional Responses to Hypoxia in Single Carotid Body Cells

  • Protocol
  • First Online:
Hypoxia

Abstract

The carotid body is the main arterial chemoreceptor in mammals that mediates the cardiorespiratory reflexes activated by acute hypoxia. Here we describe the protocols followed in our laboratory to study responsiveness to hypoxia of single, enzymatically dispersed, glomus cells monitored by microfluorimetry and the patch-clamp technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 310:C629–C642

    Article  PubMed  Google Scholar 

  2. López-Barneo J, López-López JR, Ureña J, González C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–582

    Article  PubMed  Google Scholar 

  3. Peers C (1990) Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci Lett 119:253–256

    Article  CAS  PubMed  Google Scholar 

  4. Stea A, Nurse CA (1991) Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflügers Arch 418:93–101

    Article  CAS  PubMed  Google Scholar 

  5. Buckler KJ, Vaughan-Jones RD (1994) Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ureña J, Fernández-Chacón R, Benot AR, Álvarez de Toledo GA, López-Barneo J (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91:10208–10211

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paton FR, Sobotka A, Fudim M, Engelman ZJ, Hart EC, McBryde FD et al (2013) The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61:5–13

    Article  CAS  PubMed  Google Scholar 

  8. Marcus NJ, Del Río R, Schultz EP, Xia XH, Schultz HD (2014) Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J Physiol 592:391–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. López-Barneo J, Pardal R, Montoro RJ, Smani T, García-Hirschfeld J, Ureña J (1999) K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir Physiol 115:215–227

    Article  PubMed  Google Scholar 

  10. Sakmann B, Neher E (1995) Single cannel recording. Plenum Press, New York

    Book  Google Scholar 

  11. Molnar P, Hickman JJ (2007) Patch-clamp methods and protocols. Humana Press, New York

    Book  Google Scholar 

  12. García-Fernández M, Ortega-Sáenz P, Castellano A, López-Barneo J (2007) Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–2900

    Article  PubMed  Google Scholar 

  13. Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P et al (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22:825–837

    Article  PubMed  Google Scholar 

  14. Delpiano MA, Hescheler J (1989) Evidence for a PO2-sensitive K+ channel in the type-I cell of the rabbit carotid body. FEBS Lett 249:195–198

    Article  CAS  PubMed  Google Scholar 

  15. Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498:649–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587:2963–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wyatt CN, Peers C (1995) Ca(2+)-activated K+ channels in isolated type I cells of the neonatal rat carotid body. J Physiol 483:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riesco-Fagundo AM, Pérez-García MT, González C, López-López JR (2001) O(2) modulates large-conductance Ca(2+)-dependent K(+) channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism. Circ Res 89:430–436

    Article  CAS  PubMed  Google Scholar 

  19. López-López J, González C, Ureña J, López-Barneo J (1989) Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J Gen Physiol 93:1001–1015

    Article  PubMed  Google Scholar 

  20. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  21. Becker PL, Fay FS (1987) Photobleaching of fura-2 and its effects on determination of calcium concentrations. Am J Phys 253:C613–C618

    Article  CAS  Google Scholar 

  22. Duchen MR, Biscoe TJ (1992) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buckler KJ, Turner PJ (2013) Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol 591:3549–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Botín Foundation, the Spanish Ministry of Economy and Innovation (SAF2012-39343, SAF2016-74990-R), and the European Research Council (ERC Advanced Grant PRJ201502629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana María Muñoz-Cabello or José López-Barneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muñoz-Cabello, A.M., Torres-Torrelo, H., Arias-Mayenco, I., Ortega-Sáenz, P., López-Barneo, J. (2018). Monitoring Functional Responses to Hypoxia in Single Carotid Body Cells. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics